1 0 6 O R e s e a r ¢ h , L t d
White Paper Series

Introduction to Resource-Oriented Computing

Part |

1060® Research white paper series:
Introduction to Resource-Oriented Computing — Part |

Version: 1.0.2
July 12, 2007

1060 and NetKernel are registered trademarks of 1060 Research Ltd.

<1060

research

© 2007,1060 Research, Ltd. www.1060research.com

Introduction to Resource-Oriented Computing Part |

Executive Summary

This white paper introduces Resource-Oriented Computing (ROC) and explores the reasons why
it provides an economically compelling and technically elegant computing platform. The paper
presents the axioms of ROC, discusses historical examples and examines a complete resource-ori-

ented computing platform.

This paper makes statements about performance and the economics of system engineering that
will sound to many like well worn marketing hype. To demonstrate that these statements are in
fact simple facts, the paper introduces and builds upon a foundation of fundamental principles. It

1s likely that these principles will challenge your understanding of the nature of computation.

Resource-oriented computing is a new computing model with an old history. ROC is concerned
first and foremost with information processing. It emphasizes logical information sources, uses,
and transformation, ahead of physical code, data, and programming languages. The change of pri-
mary focus from languages to information represents a departure from an evolutionary path that
has led from machine code to assembler, procedural, modular, and then object-oriented program-
ming. Whilst this evolution has yielded significant improvements in productivity and expressive-
ness, ties to the physical computing layer (such as physical addresses) have restrained a leap for-

ward to a truly simple logically-based computational model.

Resource-oriented computing offers this new simplified computing model. While it may seem that
a model separated from direct association with the physical computing layer would be inefficient,
hard evidence indicates the opposite. Resource-oriented systems typically run three to four times
faster than equivalent systems written in Java J2EE and Microsoft .Net. Resource-oriented sys-

tems scale with CPUs for the same reasons that web sites scale with load balancing.

The economics of resource-oriented computing are compelling. Systems require ten to one hun-
dred times less code and application development time is measured in weeks instead of months
and years. Life-cycle costs are dramatically lower because the resulting systems manage complex-

ity and are inherently more flexible.

Resource-oriented computing is based on simple principles and is easy to learn. This white paper
provides a high-level introduction to the major concepts. More information is available from 1060

Research at www.1060research.com

© 2007, 1060 Research, Ltd 2 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Introduction

Resource-oriented computing (ROC) is a simple fundamental model for describing, designing, and
implementing software and software systems. Its simplicity derives from a small set of principles
discovered through research initially started at Hewlett-Packard Laboratories and continued and
expanded by 1060 Research. Resource-oriented computing is simple, not simplistic. Powerful pro-
duction systems have been built in a fraction of the time required by an equivalent object-oriented
solution. It is consistently shown that resource-oriented systems require one to two orders less
code, typically perform three to four times faster, are inherently more flexible and robust to
change, and require zero modifications to scale on platforms as the number of CPU cores is in-
creased. But, to be able to differentiate these statements as cold facts and not industry hype, we

must first explore our fundamental understanding and preconceptions of what computation is.

If you prefer to study some examples of real resource oriented systems please skip ahead to the “Ex-
amples of Resource Oriented Systems” section. If you want to think about the fundamental basis of
computation stick with it - if the going gets tough you might want to step off to look at the exam-
ples too!

© 2007, 1060 Research, Ltd 3 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Resource Oriented Computing Fundamentals

A resource is a set of information. Specifically, in resource-oriented computing, resources are
treated as abstracts; that is, a resource is a Platonic’ concept of the information that is the subject
of a computation process. At the physical level, a ROC system processes resource-representations,
executes transformations and, in so doing, computes new resources. In this respect ROC is no dif-
ferent to any other computational model — computation is performed to collate and reveal new in-

formation.

The shift in thinking introduced by ROC allows one to directly consider the abstract world of re-
sources and in so doing, step-up and away from the physical implementation details of languages,
object models and code. With ROC one designs and develops information processing systems by
working on a new plane that is fundamentally logical and abstract. On first introduction such
talk can sound like a bizarre and philosophical basis for a software development paradigm! Our
purpose in this white paper is to demonstrate that by placing computation on a solid and funda-
mental resource-centered foundation we can obtain huge practical returns and reveal a world of
software development that lives in close harmony with the set-theoretic fabric of computation theo-

ry and that is unencumbered by the intricacies and escalating complexity of physical code.

Having embarked on an apparently crazy philosophical mission, let us consider our intuitive un-
derstanding of abstract resources and see how this is something we are actually very familiar
with outside of the software realm. For example, the story “Jack and the Beanstalk” is an abstrac-
tion that can have many physical realizations. It could be represented as a printed hard cover
book, a printed paperback book, an audio book in MP3, a word-of-mouth story; and for each, there
can be an English language version, a French or Spanish language version, etc. When we refer to
“Jack and the Beanstalk” we usually mean the abstract idea of the story, which covers the poten-
tially infinite set of possible representations. In fact within the software realm we encounter this
all the time, for example, the abstraction “People Registered for the Conference” refers to a partic-
ular set of people. In a computer system this can be represented as a database table, an XML doc-
ument, a CSV file, or as a collection of linked objects; and for each, there can be Java language
version, Ruby, Python, Lisp, etc. In all cases, the information resource is the same and the com-
puter user viewing their display or reading the printed attendee list is totally indifferent to the
choice of physical representation; their only concerns are about correctness and availability of the

information.

1 Harte, “Plato on Parts and Wholes”, Oxford University Press ISBN: 0198236751

© 2007, 1060 Research, Ltd 4 www.1060research.com

Introduction to Resource-Oriented Computing Part |

To get a little more formal, we can define the first axiom of resource-oriented computing as:

A resource is an abstract set of information

In order to be able to compute anything we must be able to identify what it is we are computing.
In programming languages we understand that we must assign transient logical labels to infor-
mation resources held in memory — we call these variables. In resource-oriented computing we
have stepped off the physical plane of languages and their close ties to physical memory and onto
a logical plane. We can therefore choose to identify a resource using any suitable logical identifier.

The second axiom of resource-oriented computing is therefore:

Each resource may be identified by one or more logical
identifiers

This has a feeling of being very abstract! What do we mean? Let's reconsider the real-world exam-
ple, the children's story identified by the title “Jack and the Beanstalk”. A particular representa-
tion of the story, a book printed by a publisher, could also be considered as a manifestation of the
resource and it would be identified by an ISBN. In this example, each physical printed copy is a
representation, while the ISBN identifies the abstract idea of the printed book. There is a poten-
tially-infinite set of identifiers for the resource that may be useful — for example, different ISBNs
for hardback and paperback etc. A key understanding is that an identifier has value when it can
be used within a specific context to resolve a physical representation of the information resource.
For example, Amazon.com or the public library provide an information context in which an ISBN
can be used to resolve a physical copy of the story. This suggests the third axiom of ROC:

A logical identifier may be resolved within an information-

context to obtain a physical resource-representation

Resource-oriented computing is concerned with constructing software systems which usefully re-
solve logical identifiers to obtain physical representations. In resource-oriented computing we can
define a context as an information-space that contains a set of identifiable resources. It can be
convenient to use the more intuitive term address-space and to think of resource-identifiers as ad-
dresses in the space — but be careful not to confuse these with the historic usage of the terms for
physical-addressing within computing systems such as a pointer to a memory location; resource-
oriented computing is concerned with logical identifiers and logical addressing. Using our book
example, a useful address space is the set of books that can be identified by an ISBN. Within the

software realm, a resource-oriented system can use any suitable addressing system and, as we

© 2007, 1060 Research, Ltd 5 www.1060research.com

Introduction to Resource-Oriented Computing Part |

will see later, a particularly useful addressing system is the Uniform Resource Identifier (URI).

From this discussion we can introduce the fourth axiom of ROC:

Computation is the reification of a resource to a physical

resource-representation

When a resource is requested within a resource-oriented system a resource-identifier is resolved
within a context and a concrete, immutable representation is provided. It is important to high-
light the immutability requirement of representations. We have said that there may be many re-
source-identifiers for the same logical resource — therefore it is essential in a heterogeneous logi-
cal computing system that physical representations are immune to side-effects — that is, a re-
source's information-set cannot be changed by modifying a representation. Fundamental changes
to a resource are achieved only by acting on the primary source of the resource itself. To use the
book metaphor, if we were to take a copy of Jack and the Beanstalk and rewrite the information
related to the concept of the 'Bean' and the 'Beanstalk' in order to tell a story about 'Rocket Fuel'
and a 'Magic Rocket' then the modified representation would not correspond with the 'Jack and

the Beanstalk' identifier and the reader would be confused. The fifth axiom is:

Resource representations are immutable

A representation is current as of the moment it is requested. If the resource is re-requested a
ROC system has the choice of returning the same representation (possibly from a cache) or a new
one. If the underlying information resource has changed since the last request, then the system
must return a new representation. Its hard to think of a book metaphor that reflects this require-
ment since books are fundamentally a representation of a static resource. But consider a news
website, whenever we request that site, we get an instantaneous snapshot of the news, but in ten

minutes time the news will have changed and a new representation will be available at the site.

Finally we can consider the nature of physical resource representations. In an ROC system a rep-
resentation may be of any physical form that the resolved provider is capable of producing. For
example, the representation might be a Java object, an XML document, a Ruby object or any oth-
er suitable information structure. The requestor of the resource may indicate a preference for the
form of the representation at the time of the request. If there is a mismatch between the form
preferred by the requestor and the form produced by the provider then a ROC system can inter-
mediate and attempt to find a transformation that can change the representational form. This op-
eration is a lossless, isomorphic conversion of the resource information from one representational
type to another. To distinguish from a non-isomorphic transformation (i.e. a regular computation-

al function that produces a new and distinct information resource), this lossless operation is

© 2007, 1060 Research, Ltd 6 www.1060research.com

Introduction to Resource-Oriented Computing Part |

called transrepresentation (or more commonly abbreviated to transreption). We can see that this
1s not unfamiliar in the real-world, when we perform a language translation of Jack and the
Beanstalk we endeavor to create a lossless transformation. Equally, this idea has always been at
the heart of computer science, we are very familiar with the idea of losslessly transforming
source-code into machine executable instructions — we call this compiling. Equally when we parse

a file we losslessly transform the physical representation from disk to memory.

Transreption is the isomorphic lossless transformation of one

physical resource-representation to another

Finally, and perhaps most importantly for a software system, new resources may be computed by
applying operations to existing resources. Operations are themselves identified within the ad-
dress space and they operate on the information/resource model with semantics that are relevant
to that model. The identifier for the computed resource may be expressed as a combination of the
operation identifier and the resources that are operated upon to create the new resource. To use
our metaphor for the last time, we can easily edit together “The Big Scary Book of Children's
Fairy Tales” as a compendium containing the Jack and Beanstalk story and it can have its own
ISBN. Our last axiom is then:

Computational results are resources and are identified within

the address space

In summary, the principles of resource-oriented computing are:
1. A resource is an abstract set of information
2. Each resource may be identified by one or more logical identifiers

3. A logical identifier may be resolved within an information-context to a physical resource-

representation
4. Computation is the reification of a resource to a physical resource-representation
5. Resource representations are immutable

6. Transreption is the isomorphic lossless transformation of one resource-representation to

another
7. Computational results are resources and are identified within an address space

In the next sections of this white paper we will examine examples of existing information systems

that exhibit some of the principles of ROC. We will then look at an implementation of a complete

© 2007, 1060 Research, Ltd 7 www.1060research.com

Introduction to Resource-Oriented Computing Part |

ROC system for building general software applications and systems.

Examples of Resource-Oriented Systems

In this section we will look at three examples which exhibit, in varying degrees, some of the prin-
ciples of a resource-oriented computing system. The first is the World Wide Web, the second is the
set of Unix command line tools, and the third is Yahoo! Pipes? an end user content aggregation
and management tool. After examining these examples we will look at the application of resource-

oriented computing to general software development.

World Wide Web

The World Wide Web is a distributed information system in which information is identified by
Uniform Resource Locator (URL) logical addresses. When a resource is requested, the logical ad-
dress is resolved in stages. First, the domain name
portion of the URL is resolved by the Domain Name . @

. . . Pt My COMEany.com
Service (DNS) into a physical Internet Protocol (IP)

address. Then the whole URL is sent to that IP ad- G I"ﬁ il

dress for processing. The recipient of the request is a i

Server

web server® which resolves the remainder of the ad- Repressniation

dress, makes a copy of the requested information, and

sends back a representation.

Let us now examine how the World Wide Web follows

some of the principles of resource-oriented computing. Following axiom #1, all information in the
Web is abstract. For example, the address http:/www.myvcompany.com/photos/john refers to a re-
source (possibly a photograph) and the web server may return a representation as a PNG, JPEG,
GIF, or any other image encoding or it may return an HTML page. Axiom #2 states that multiple
logical identifiers may map to a single resource, this is supported by mappings within both the
DNS system and the web server. Two domains may map to the same IP address and different
URLs may map to the same resource within a web server. Axiom #3 concerns the resolution of a
logical address to a physical resource-representation, this is the core role of a web-server, an ex-
ample that is very common is when a set of URLs are mapped to a physical directory of files on a
host file system. Axiom #4, that computation is the reification of a resource into a physical repre-
sentation, is a formal statement which corresponds with the processing that must occur on the

computer running a web server. The immutability requirement of Axiom #5 is not uniformly ob-

2 http://pipes.yahoo.com

3 Example web servers are Apache, Microsoft IIS, etc.

© 2007, 1060 Research, Ltd 8 www.1060research.com

Introduction to Resource-Oriented Computing Part |

served in the web, but is partially observed in the caching of representations in the web-browser
and proxy-servers. The formal idea of transreption as an isomorphic transformation of a represen-
tation in Axiom #6 is not found in the Web. The location of computational information in the ad-
dress space presented by Axiom #7 is not a general property of the web but is sometimes used in
RESTful dynamically generated web sites where a parameterized URL expresses the location of

the computational resource generated in response to a web request.

Even as a partially complete resource-oriented system, the Web has very attractive properties.
The lack of coupling between the client and server results in high degree of flexibility. Changes
may be introduced gradually without disrupting the Web. Servers and browsers may be imple-
mented using a wide range of technologies and may be upgraded independently at any time. Due
to its innate separation of the logical resource space from physical implementations, the Web has
phenomenal scalability. For example, load balancing enables a single logical URL address to be
physically handled by one or many thousands of servers — this is the reason why, for example,
google.com can work at all. In addition, because resource representations are immutable physical
data, they may be cached under their logical identifier (URL) at any point in the network, this
property minimizes the computational load of the web server and the data transfer cost to the

network.

The economic properties of the Web, and its resource-oriented nature, have led to its success. In
the Web, the cost of change is less than or equal to the value added. Whether a small participant
with a single web site or a large corporation such as Yahoo! or Google, participation in the web is

manageable technologically and economically.

Unix and Unix Tools

Another well known system with resource-oriented characteristics is the Unix operating system
and, in particular, the POSIX tool set. These programs, such as grep, awk, sed, and others, work
with a resource model of files containing line-delimited ASCII text. Unix provides an abstract
tree-structured file system which implements a uniform logical address space. All resources and
tools are identified with logical addressing, their filename, which may be a direct mapping to a
physical inode or might be an indirect reference via a symbolic link. For example, a file resource
might be identified as /home/rsk/readme.txt and tools to operate on that resource are invoked by
requesting their logical identifier names in the logical address space. The physical code that is ex-
ecuted depends on the resolution process performed by the Unix operating system to map the log-

ical request to the physical code. The interface between tools is the Unix pipe (“|”), an abstract
file resource that moves data from the output of one tool to the input of another. For example, if

the file /home/rsk/readme.txt contains:

© 2007, 1060 Research, Ltd 9 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Hi!
This is a readme file.

Then the execution of this set of pipelined commands:

cat /home/rsk/readme.txt | grep file

results in the following output where only the lines that contain “file” are retained.

This is a readme file.

If a multi-step process or some decision making capability during the operation are required, then

these pipelined requests can be orchestrated with a scripting language.

The Unix command-line tools constitute the earliest example of a computing system demonstrat-
ing aspects of resource-oriented computing. Resources are abstract binary streams identified with
a logical address (based on the file system abstraction). When requested, the resources are provid-
ed as a stream of immutable information. There is only one resource type so there is no possibility
to convert to another format. And, all operations, including operations qualified using modifier

switches, are semantically valid when viewed within the ASCII text resource model.

It is interesting to note that, just as in the Web, the physical technology (such as programming
language) used to implement each tool is irrelevant. Scripting is supported in this model — Bourne

Shell scripts, Tcl scripts, and other languages can be used to orchestrate the processing of re-

sources.
Yahoo! Pipes

Yahoo! Pipes is an end- felwflf.‘“"’”:ii;:‘j? e e =T 1

user web feed program- i Z::;'m %3 ST (i i

ming tool. It uses a web et E oo

browser based graphical oo == - =

editor to allow users to e Pt e s e

specify pipelined process- e

ing of information repre- — ~ — rm

sented as either RSS or ot S pr——

Atom feeds. A user can e

reference one or more feed [romeriae tome on i |

resources as URL address- T

© 2007, 1060 Research, Ltd 10 www.1060research.com

Introduction to Resource-Oriented Computing Part |

es in the Fetch tool. The feed representation can then be operated on with tools such as Count,

Sort, Union, Filter, and Truncate.

Yahoo! Pipes is an application that openly borrows and adopts the Unix tool abstraction to pro-
vide a composable processing system and so naturally demonstrates a subset of the resource-ori-
ented computing seen in Unix. Information is abstract until it is requested and then representa-
tions are returned in the form of Atom or RSS feed representations. All operations are logical and

function at the level of the information model.

© 2007, 1060 Research, Ltd 11 www.1060research.com

Introduction to Resource-Oriented Computing

Part |

General Software Development

Starting seven years ago, in Hewlett-Packard Laboratories and
for the past five years at 1060 Research we have been pursuing
the answer to a simple question “What if resource-oriented com-
puting was applied to general software development?” The jour-
ney has covered more ground than we anticipated but the discov-
eries along the way have been both exciting and rewarding. At a

high level, we have discovered the following benefits:

+ ROC software inherits the economic properties seen in the
World Wide Web.

+ ROC permits complexity to be managed leading to overall
quality gains.

+ ROC software is more flexible, which dramatically increases
development agility and reduces life-time maintenance costs.

+ ROC software performance increases in surprising ways and
scales linearly with CPU cores.

+ ROC systems require less operating memory.
» ROC requires orders of magnitude less code.

The remainder of this white paper will examine a complete re-
source oriented computing platform and explore how its imple-

mentation provides an answer to the question we set ourselves.

A Model for General Software Development

To understand how to apply ROC to general software develop-
ment we first specified a computational model and then built a
concrete implementation in the form of 1060 ® NetKernel .
NetKernel 3.1 is a mature, robust ROC platform used in produc-
tion systems ranging in scale from small (embedded), to large
(displacement of J2EE type enterprise systems), to distributed
(distributed food chain tracking system).

NetKernel embodies all of the axioms of resource-oriented com-

puting in a uniform and self-consistent model. Let's see how

URI Addressing Details

The URI specification allows for the cre-
ation of new address schemes. The gen-

eral form of a URI is:

{scheme-name} : {scheme-specific-
address}

In addition to the URI address schemes
that work well across computers such as
http:, and schemes that work across a
computer such as file:, NetKernel uses
new schemes that work well within a
software system such as ffepl:, active:,

var:, and others.

The ffepl: scheme is similar to file:, iden-

tifying resources within a module.

The var: scheme identifies resources
which hold values during a computation-

al process.

The active: scheme references software
operations and is essentially a function-
al programming language encoded as a

URI. For example:
active:random

identifies a random number generator. A
plus sign “+” in the active scheme is
used to indicate parameters. In the fol-

lowing:
active:random+min@10+max@100

the text “+min@10” specifies a parame-
ter named “min” and associates the val-
ue 10; the text “+max@100” specifies a
parameter named “max” and associates
a value of 100. This is analogous to a

more traditional function call syntax:

random(10,100) ‘

URI addresses can be used as the value

for parameters. For example, in:

active:xslt+operator@ffcpl:/style.xsl
+operand@ffcpl:/data.xml

the xslt function is given references to
resources for the “operator” and

“operand” parameters.

© 2007, 1060 Research, Ltd 12

www.1060research.com

Introduction to Resource-Oriented Computing Part |

these are manifested in NetKernel.

NetKernel ROC Platform

Axiom #1 states that resources are abstract sets of information. In NetKernel all resources are
abstract and are not directly manipulated. Instead a resource may be logically requested and re-
solved to a physical Accessor, a software endpoint, that can access (compute) a physical resource

representation.

Axiom #2 states that each resource may be identified by one or more logical addresses. In NetKer-
nel there are no exceptions - all resources are logically identified: whether the resources contain
business information, configuration information, or calls on software functions to transform re-
sources. NetKernel uses the generalized Uniform Resource Identifier (URI) as one of its standard
logical identifier models (see side-bar). Uniform addressing is important for two reasons. First, in-
direction via a logical address ensures that all resources can be dynamically computed or substi-
tuted at run-time. Second, uniformity ensures the abstraction is self-consistent and does not suf-

fer from corner-cases or exceptions®.

Unlike object-oriented programming, where objects may hold
direct physical references to other objects, resources in NetK-
ernel refer to each other by a logical URI address. NetKernel
1mplements indirect URI addressing by directing resource re-

quests to a micro-kernel acting as an intermediary. The micro-

Indivect Addressi kernel is a URI address resolver which locates the accessor
ndirec ressin . .

3 (shown as the “A” in the diagram) that can return a represen-
tation for the identified resource. In NetKernel all references, external and internal, are resolved

similarly.
Address Spaces and Modules

Axiom #3 states that logical identifiers are resolved to physical re-
source-representations within an information context. NetKernel mod-

@ @ @ @ ules contain this information context — they are a physical container

.

e 4 for a logical resource address space. Modules are valuable as they al-

® ® ® ® ® low developers to group resources that have similar capabilities or
serve a common purpose. For example collections of static application

resources, dynamic business logic functions or database query opera-

L | tions can be placed in separate modules making it easier to manage

NetKernel Module iposition of immutable representations and dynamic creation of those representations.
As will be shown later, this leads to dynamic flexibility and near-static performance.

© 2007, 1060 Research, Ltd 13 www.1060research.com

Introduction to Resource-Oriented Computing Part |

and share these capabilities. NetKernel modules include life-cycle management including live
module updates, roll-back to previous configurations, and the simultaneous use of different mod-
ule versions. This is possible since the coupling relationship between modules is logically defined,

as required of a resource-oriented system, and is independent of physical implementation.

The resource address space of a module is further partitioned.
All resources reside in a private internal address space. A por-
tion of the address space can be made public and exported. Mod- @ @ @ @

ules may import the public exported address space of other

&

private agdress
modules into their own private internal address space - applica- ® ® ® ® ®
tions may therefore be composed out of cleanly separable logi-

cally-linked modular units.

For example, NetKernel's mod-db module provides database
connectivity capabilities. mod-db contains many Java classes,
JDBC libraries, and other supporting code, all of which reside in Afodule importing other modules
the internal private address space. The mod-db module exports

a limited portion of its private internal address space to expose access to its logical capabilities
such as the function active:sqlQuery. Modules that require these capabilities will import mod-db

and then may directly request the exposed functions.

Transports

NetKernel supports transports, a mechanism that forwards

resource requests originating outside the software system to

a module inside and then returns a resource representation

- T 4 back to the external client. Transports are not part of the for-

AREE®

mal resource-oriented computing model, but are vital for

building real-world systems.

A transport is a protocol handler that accepts events via pro-
tocols such as HTTP, SMTP, JMS, etc. and translates these

events into resource requests that are issued into the address

Fulcrum Module space of a hosting module. A NetKernel module that hosts a
transport is called a fulcrum. A NetKernel application is usu-
ally composed of one or more fulcrum modules and the application modules which the fulcrum im-

ports.

© 2007, 1060 Research, Ltd 14 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Computation

Axiom #4 states that computation is the reification of a resource to a physical resource-represen-
tation. Axiom #7 states that computational results are resources and are identified within an ad-
dress space. In NetKernel computation can take place behind any logical address. In fact, there is
an important duality in NetKernel, resources are identified by URI addresses and computations
are identified by URI addresses therefore the result of all computation is considered to be a re-

source.

Representations and Transreption

Axiom # 5 states that resource-representations are immutable. NetKernel provides a number of
resource object models for industry standard resource types such as XML and these are imple-
mented to present immutable read-only interfaces. Application-specific resource models can be

easily added to the system.

Resources are abstract in NetKernel. They are also typeless. For example the resource “the list of
people attending a conference”, might have the URI ffcpl:/conference/attendance-1ist and the
representation might be an array of Java String objects, a spreadsheet, or an XML document

fragment.

In NetKernel a resource provider may be able to provide concrete representations in a variety of
formats or only one preferred format. The client requesting a resource may accept any format or
it may specify a specific representation format. The relationship between the requestor and
provider is not dictated by the physical type of these resources — it is only constrained by their

logical relationship in the address space.

Axiom #6 defines transreption as the isomorphic lossless transformation of one representation to
another. In NetKernel, all resource requests are handled through the intermediating micro-
kernel which makes it possible to detect mismatches between the client's requested format and
the provider's ability to produce the format. If there is a mismatch, NetKernel searches for a
Transreptor that can perform transreption from the available to the desired representation. This
late-bound logical decoupling provides enormous malleability to software, enabling change to be

absorbed and accommodated with minimal cost.

Summary

NetKernel's computational model is a proven resource-oriented computing system for general
software development. NetKernel has been used for a wide variety of systems including data
analysis processing pipelines, cross-domain enterprise data integration, web-applications, service-

oriented composition, discovery and fulfillment and even peer-to-peer autonomous network nodes

© 2007, 1060 Research, Ltd 15 www.1060research.com

Introduction to Resource-Oriented Computing Part |

in very large distributed systems. In every case, the proven benefits of ROC seen in Unix and the
Web are found to translate to general software and have resulted in dramatically simpler and

more performant projects.

Architect's View

A software architect can approach resource-oriented computing as a clean, consistent, and natu-
ral way to think about and express software systems because of its primary focus on information.
Architects have long aimed to develop and maintain a clean separation between the logical infor-
mation model of a system and its physical implementation. Even when they are successful, sys-
tem architectures degrade over time during the project cycle as changes, additions, and correc-
tions are applied in ways that cause the physical code to deviate from the original logical model.
In a ROC system the implementation is anchored at the logical level — operations applied to re-
sources are semantically relevant at that level of abstraction. And, since code to deal with type
conversions and other such details are simply not needed in an ROC system, the code that does

remain 1s easier to read and understand.

Architects who use NetKernel to build systems report that the ROC approach dramatically re-
duces perceived complexity, increases their ability to rapidly build accurate and expressive sys-

tems, and reduces overall design, development and maintenance costs.

Architects working with NetKernel develop a mental model similar to the visual presentation of
Yahoo! Pipes. They see information flowing through a NetKernel application just as Atom feeds
flow through Pipes. The term we use is information channels. Just as end users can think about
Atom and RSS feeds in Yahoo! Pipes without worrying about the details, NetKernel architects
find that they can spend their time designing the information model for a system, the relationship
between resources, the layering of their application and the flows along information channels in-

stead of a myriad of tangential details.

Furthermore, because ROC works with sets of information, each connection and relationship es-
tablished in NetKernel represents not individual datum but rather collections of data. This is im-
portant for two reasons. First, it further reduces the overall complexity of applications as there is
simply less to think about. Second, computing is fundamentally based on set theory. For example,
the foundation of relational databases is mathematical set theory and SQL queries are really set
operations (Union, Intersection, etc.). In an object-oriented environment there is an impedance
mismatch between the sets of a relational database and the points of data represented by objects

— this is called 'the object-relational problem'. In a ROC system the set of information returned by

© 2007, 1060 Research, Ltd 16 www.1060research.com

Introduction to Resource-Oriented Computing Part |

a database query can be represented naturally as a set-centric resource such as, for example, a
single XML document. In NetKernel sets of information can be processed in their entirety with

single instructions.

Architects will also appreciate that once resources, relationships, and channels are defined, creat-
ing a finished application is straight forward. In fact, in most cases the prototype is the applica-

tion and no additional “development” phase is required for the project.
Here is a partial list of decisions that an architect does not have to make when using NetKernel:

+ Object-Relational mapping product or technology. With a resource-oriented system there is
no impedance mismatch with a relational database and no mapping product or technology is

required.
+ Caching product or technology. NetKernel is built upon an advanced caching system.

+ Application server. NetKernel is a complete managed enterprise server platform. No applica-

tion server product or technology is required.

« Frameworks. The decision to use J2EE, Spring, Struts, JSP, JSF, etc. is not required.
NetKernel is a complete, extensible development and execution environment. No other

frameworks are required.

« Compromise small size versus scalability. NetKernel scales from cell phones up to multi-core

and multi-CPU computers.

«+ Protocol support. In NetKernel, protocols are independent of the application. Any protocol

can be added later — even while the application is running.

+ REST vs SOAP vs WOA. NetKernel concurrently supports all popular SOA flavours for in-

voking and exposing web services.

© 2007, 1060 Research, Ltd 17 www.1060research.com

Introduction to Resource-Oriented Computing Part |

ROC Process

Architects can view NetKernel system development as comprising three stages: construct, com-
pose, constrain. Construct refers to building new resource models or resource-level software func-
tions. Frequently the Construct phase is not required as the existing body of resources and func-
tions is rich and diverse. Compose refers to the creation of resources from lower level resources.
For example, a web page might be composed of a menu resource, title resource, and the body. The
application of constraints is last — this is when security, auditing, validation, or other restrictions
are applied to the general software solution. As we will see later, this order is significantly differ-
ent from object-oriented development in which constraints (in the form of typed classes) are ap-
plied first®.

Construct

Construct is the first stage in the ROC programming process. The purpose of this stage is to cre-
ate resource models, which include physical resource representation formats and resource-level
software functions, required by an application. In most cases this stage is not actually required as

NetKernel includes a rich modular library of resource models and functions.

A resource model is a collection of related representation formats and software functions. For ex-
ample, NetKernel includes the industry-standard XML resource model and related functions.
XML is a flexible and expressive resource model that is increasingly being used for intra and in-
ter systems communication. NetKernel supports the representational types DOM, JDOM, SAX,
and Stax, along with transreptors to convert between these types. Also included is a family of in-
dustry-standard software functions such as XSL transformation, XQuery processing, XPath sup-
port, etc. The mod-db module provides database connectivity functions that are able to process

and return XML documents representing queried information.

Some application domains will require custom resource models. For example, hospital informa-
tion management systems frequently use the HL7 information exchange format. In situations
where a new resource model is required, the supporting code can be designed and built using
Java and traditional object-oriented development techniques. Once built, the resource model be-
comes a part of the overall capabilities of NetKernel and the resources can be composed and con-

strained just like others.

Compose

Composition refers to the logical linking of a system in order to create a solution. A composite sys-

tem is effectively a process which computes new resources from lower-level resources. Starting

5 This early application of constraints is one reason object-oriented code is brittle.

© 2007, 1060 Research, Ltd 18 www.1060research.com

Introduction to Resource-Oriented Computing Part |

with the definition of the resources that an application returns to users, an architect can identify

the constituent components and then define an information channel to bring them together.

Composition can be achieved in a number of flexible ways. Just as in Unix, atomic service-based
tools can be linked to together as functional pipelines via URI expressions. Equally, composite
and stateful orchestrations can be written in any of several dynamic scripting languages — it will
be discussed below that the execution of dynamic code by language runtimes is treated in a uni-
form and consistent way. Finally, it is quite straightforward to create declarative descriptions for

compositions which can be dynamically interpreted to fulfill the composition process.

Whichever way the composition is assembled, the resulting information process is uniformly mod-
eled in ROC as the source of new information resources. And since all resources are logically lo-
cated in the address space then it is always possible to treat the composite assembly as a black-
box behind another logical address. In this way, at one layer of an application you can concentrate
on the assembly of tools or resources to solve the problem — but at the next layer up, the compos-
ite can be conceptualized as a single dedicated tool or resource which itself can be incorporated

into higher-order compositions.

Constrain

The final development stage is the application of constraints. Deferring the application of con-
straints until the end may be the biggest difference between resource-oriented development and
other approaches. However, this ordering makes sense. Constraints are the way in which we en-
force integrity on an information process. They should not impact the overall structure or busi-
ness validity of an architectural design. Constraints are rules that provide boundaries or limits on
the processing potential that already exists. A simple constraint might be a range of dates al-
lowed in a user input field or a specification that the access to certain information resources be

limited to users with specific credentials.

The application of constraints can be viewed as a layer that is applied over an existing applica-
tion. In many cases in NetKernel this is literally how they are applied. For example, the applica-
tion of a security policy constraint is achieved by overlaying the Gatekeeper service. This is sim-
ply a wrapper to an address space that examines supplied credentials and either forwards the re-
quest or rejects it. The Gatekeeper can be applied or removed by simply changing one line of code

In an application.

Constraints can be applied interactively at the application level — for example, to enforce seman-
tic integrity on data inputs, by, for example, raising questions such as: is this a valid username?

They may also provide quality assurance within and between parts of a composite solution. Used

© 2007, 1060 Research, Ltd 19 www.1060research.com

Introduction to Resource-Oriented Computing Part |

this way a resource validation constraint can ensure a developer has correctly implemented the
specification. Validation constraints can be applied during runtime if necessary or for perfor-

mance can be applied only during testing and deployment integrity checking.

The key takeaway is that constraint in ROC can be considered as separable and independent
from the core composition of the information system. Perhaps surprisingly, by allowing constraint
to be applied in a decoupled manner, the overall integrity of an ROC information system is actu-
ally increased relative to that possible in the constraint-first world of traditional type-focused pro-

gramming.

© 2007, 1060 Research, Ltd 20 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Developer's View

For developers, ROC offers a clean and simple environment in which to craft flexible, composable
computational units. With ROC's clean and clear separation of the logical information process
from the physical implementation, developers can concentrate on well defined, constrained prob-
lems without having to deal with complexities leaking in from the overall system. Nor does the
developer need to absorb and consider the whole of the general business process being implement-
ed.

In addition, since an ROC system is focused on abstract information resources, physical consider-
ations such as the choice of programming language and specific object model are secondary deci-
sions. Systems can be composed from units written in the language whose characteristics match

the task they are solving — whether that is a technical, economic or skill-set consideration.

In this section we will examine ROC from the development perspective.

Language Runtime as Service

In NetKernel the computation of resources can be accomplished in a wide choice of languages.
The code for a computation may be executed by a language runtime, which is itself a logically lo-

cated service. For example, to run a JavaScript program the following URI is used.

active:javascript+operator@ffcpl:/src/program.js

In this example, the JavaScript runtime is invoked by issuing a URI request for active:javascript
and the language runtime engine is told the code to execute by providing the URI to the code as

the value of the “operator” parameter. Similarly a Ruby program can be run with the following.

active:ruby+operator@ffcpl:/src/program.rb

JavaScript and Ruby are both procedural languages. Non-procedural languages and domain spe-

cific languages are also supported. For example, an XSL transform can be invoked with this URI.

active:xslt+operator@ffcpl:/src/style.xsl+operand@ffcpl:/src/data.xml

No matter which language is chosen, the purpose of all computation is to create new resources
and their representations. As you can see from these three examples, the result of each computa-

tion is identified by the URI and can be used just as any other resource within NetKernel.

NetKernel provides a wealth of languages. However, if a new or specifically tailored language is

© 2007, 1060 Research, Ltd 21 www.1060research.com

Introduction to Resource-Oriented Computing Part |

more appropriate, these can be designed, developed, and integrated into NetKernel. Examples in-

clude business processing languages, templating languages, or any new popular scripting lan-
guage.

Development Process

Developers will find that they will work on one or more of the essential NetKernel development

stages: construct, compose, constrain.

Construct

The purpose of the Construct stage is to create new resource models and supporting functions. Of-
ten this is not required because the existing resource models are sufficient. If required, new Ac-
cessors are written to serve as resource request endpoints. Accessors can be written in any script-
ing language, or may be developed in Java — in either case, the task is made painless by a uni-
form and consistent model and development API. Transreptors and fundamental resource models

are coded in Java in the current NetKernel 3 series of products®.

In the Construct phase developers will work with the NetKernel Foundation API (NKF). This API
provides a way to issue and accept resource requests, to generate a representation, and then to
send that representation back as the response. Whether the endpoint is an accessor generating a
new representation or a transport connecting with an external system, the NKF API is consistent

and straightforward.

Compose

The majority of development time will be spent in the compose stage. Composition is focused on
the creation of new resources from constituent resources. Composition can be done in a number of
different ways. New resources can be created using templating (e.g. XML Recursion Language -
acts as a templating language for XML), functional composition (URIs can be chained together us-
ing functional programming with the active: URI scheme), or Unix-like scripting of sequential

processes.

Since all resources are logically referenced by URI, developers can adopt techniques previously
seen outside of software development, such as the use of scaffolding. It is a simple matter to start
system development with a collection of static resources and use these to compose the broad sys-
tem together, layer by layer. For example, the address ffcpl:/index.html could be linked to a static

resource located at ffcpl:/src/index.html while the front-end of the application is constructed.

6 The next version of NetKernel will support an expanded role for scripting languages in this area.

© 2007, 1060 Research, Ltd 22 www.1060research.com

Introduction to Resource-Oriented Computing Part |

<Tlink>
<ext>ffcpl:/index.html</ext>
<int>ffcpl:/src/index.html</int>
<1link>

Later the same URI can be linked to code that will dynamically create the resource:

<1link>
<ext>ffcpl:/index.html</ext>
<int>active:xslt+operator@ffcpl:/src/style.xs]
+operand@ffcpl:/src/index.xml</int>
<1link>

Composition therefore allows the construction of robust logical relationships within the software

system and allows the details of the information itself to be treated separately from the process.

In addition, should the system require changes, the logical relationships present in the composite
system can be readily modified and the results tested in a live running system. The immediacy of
dynamically linked and evaluated development is a very significant productivity enhancement as
developers can retain the context of the development process in their head while experiencing in-

stant feedback.

Constrain

The application of constraints is the last stage of the development process. In this stage various
constraints can be layered on top of an existing, working system. A developer can use overlayed
constraints to assist with overall project delivery — a functional unit of a system can be validated
using test resources. Validation constraints can provide proof of completion and also can later be

used to provide long-term system quality assurance.

In addition, it can be very useful for a project team to choose to constrain the palette of develop-
ment tools that they will use to deliver their solution. This can be accomplished by constructing a
module that imports the desired selection of tools from other libraries and only exports a subset of
specific interest to the project. This new module can then become the standard toolbox for the ap-

plication.

© 2007, 1060 Research, Ltd 23 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Performance

In the discussion so far, the broad theme of resource-oriented computing is the transition from
static physically linked code to dynamic logically linked information processes. On first considera-
tion one might expect a performance overhead. However, and counter-intuitively, it is consistent-
ly found that ROC actually offers significant performance advantages. In this section we will ex-

plore computational performance of ROC.

Physical Execution Decoupling

Resource requests are issued to the kernel which, acting as an intermediary, resolves the address
to a physical accessor endpoint and then invokes the accessor. When the accessor completes its
task, it returns the physical resource representation to the kernel which forwards it to the initial
requestor. Since requests are not coupled to the physical execution of the code in the endpoints,
the kernel is free to manage the assignment of each computational task to a low-level thread of
execution. And, since the kernel is mediating all computation, it can use its global knowledge of
the system to manage any individual process to ensure optimum efficiency of the whole software

system.

At the logical ROC level there are no threads, only requests for resources — the logical system is
inherently asynchronous. A thread must perform the computation but the kernel is free to use an
optimal strategy to determine which thread to use and whether to use asynchronous or syn-
chronous dispatch on the thread. This flexibility allows for an optimization that minimizes com-
putationally wasteful context switching in the CPU and ensures 100% thread utilization can be

achieved as there is no need to waste computing resources by blocking threads.

An additional performance payback of logical indirection is in the scaling and optimal utilization
of SMP or multi-core processor architectures. In ROC a software function has a single logical loca-
tion but the assignment of the processing to threads occurs once the function has been requested.
This is directly analogous to the near linear scaling that load balancing offers in Web-server ar-
chitectures. In this case, ROC enables load balancing to be brought down to the finest granularity

of software and the execution of physical CPU threads.

Finally, the complexity and system-integrity challenges of developing thread-safe code is removed
from the developer. For example, a new low-level piece of code and its associated OO library will
by default be marked as UNSAFE_FOR_CONCURRENT_USE. The system architect integrating
the new functionality can be confident that the system is safe to use immediately, knowing that

the new code will never be scheduled concurrently. After review and testing, this declarative con-

© 2007, 1060 Research, Ltd 24 www.1060research.com

Introduction to Resource-Oriented Computing Part |

straint can be removed and the kernel will seamlessly parallelize and optimize the execution of
the code.

Caching

In ROC every computational result is a resource and has an identity in the address space. This
seemingly simple statement leads to dramatic performance implications. Since the outcome of ev-
ery computation is identifiable then it can be cached under that identity. If the same resource is
requested again then it can be looked up in the cache rather than execute some physical code. It
is well known in computation theory that looking things up is much much cheaper than working

them out.”

In an ROC system, such as NetKernel, every computational result can be cached. The kernel can
manage the cache using an evolutionary 'survival of the fittest algorithm' — balancing memory
use by discarding those resources that are least valuable (i.e. those that have not been reused, or
are just very cheap to recompute). Interestingly, any software system is dynamic and the set of
useful resources changes constantly. The NetKernel cache therefore achieves a dynamic equilibri-
um and retains, ready for immediate use, the optimal possible subset of computational resources.
In general business systems, we find that at least 30% of information has a lifetime longer than a
single transaction and so has the potential for reuse without recomputation. In the case of long
lived dynamic systems, having long periods of pseudo-static operation, this can rise to close to
100%. Perhaps the most interesting observation of ROC caching is that there is no need to antici-
pate what the valuable information is ahead of time. An ROC system naturally self-balances

around the sweet spot.

7 Dictionary lookup is logarithmic whereas computing a resource is generally linear or worse.

© 2007, 1060 Research, Ltd 25 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Object-Oriented Computing Comparison

How does resource-oriented computing compare with other approaches, in particular object-ori-

ented programming?

A side by side comparison of ROC and OO is not really the right perspective as ROC and OO are
not mutually exclusive. Indeed they support and augment each other. To visualize the relation-
ship, think of ROC as a logical level resting on top of a physical OO foundation. ROC is fully an-
chored on a logical computing level — resources are abstract, identifiers are logical, etc. while OO
1s anchored on a physical computing level — objects are concrete in memory and object references
are physical memory pointers. Computations must ultimately be performed at the physical level,
S0 it 1s easy to see that a logical model such as ROC must be implemented with, and must run on,

a physical platform. In the case of NetKernel, the physical kernel is implemented in Java®.

Another way to visualize the relationship is to see that ROC is an independent, logical computing
model. ROC is not an extension of OO nor is it a framework for OO. There is no “edge” to the ROC
model where it “runs out of juice” and reverts to a lower level model. An ROC implementation
doesn't even need OO as it could be written on a non-object-oriented platform. However, OO does

provide some powerful capabilities and abstractions that makes it a preferred foundation for
ROC.

The strengths of OO and the weaknesses of particular implementations (e.g. C++, C#, Java, etc.)
are well understood. In general, OO serves well for e.g. small units of business logic, but suffers
when those units are linked to create scaled up solutions. The fundamental scaling problem lies
in the brittle nature of OO code with respect to changes in business information. On a small scale,
when business information is changed then code changes ripple through the class hierarchy.
Some of the impact can be managed with tools such as IDE refactoring. However, on a larger
scale, change occurs across the boundaries of the logical application model, at the semantic and
structural foundations; beyond the scope of the physical refactoring of an IDE and outside an in-
dividual developer's responsibility. Such systemic changes in OO systems dramatically increase
the cost and risk of change. Even on a small scale, changes to an OO system, at a minimum, re-

quire a recompile, test, deploy, restart, and application state reload .

In ROC change can be continuously managed. With ROC information is abstract and typeless. In
fact, information, operations and transformation and all aspects of a program's structure and
rules are logically related. As we have seen from the axioms of ROC, binding to the physical com-

puting level is deferred to the moment of a resource request — and once that is complete, every-

8 There is nothing special about the use of Java for NetKernel. NetKernel could be implemented in other languages and platforms.

© 2007, 1060 Research, Ltd 26 www.1060research.com

Introduction to Resource-Oriented Computing Part |

thing is back at the logical level. What is apparent from analysis and practice using ROC is that
it accomplishes several important things. By treating information as abstract and locating it logi-
cally within an address space, it eliminates the brittleness found in OO coding. The majority of
investment in application design and development is made at the logical level — at this level it is
easy to reconfigure an application to respond to changes to business information and is even ro-

bust in the face of significant changes at the physical level.

Note that ROC is not an example of a model being used to generate code, which would still result
in mountains of brittle code, instead ROC is a logical model that is executed in real-time on top of
a physical computing level. The run-time flexibility this provides is just as important as the de-
sign-time flexibility. At run-time each logical reference for resources or services is resolved for
each request and since the model is typeless, the physical implementations can be changed while

a system is running without disturbing the application.

If ROC introduces a new opportunity to maximize system performance and solves the problem of
brittleness found in OO code for larger scale systems, what is the minimum size of system that
can gain from ROC? It doesn't make sense to construct primitive algorithmic functions with ROC
as this construct-phase’ task essentially extends and enhances the physical computing level sup-
porting ROC. However, as soon as relationships between logical parts must be made, these are
best done at the logical level with ROC.

9 Some low-level algorithms perform better coded at the ROC logical level. For example, the Fibonacci double-recursion algorithm
has a linear cost at the logical level and an exponential cost at the physical level. Finding similar results with other algorithms is

an active area of research.

© 2007, 1060 Research, Ltd 27 www.1060research.com

Introduction to Resource-Oriented Computing Part |

Summary

Resource-oriented computing is a new approach with a long history, and is grounded on a set of

fundamental principles combined into a simple self-consistent model. The model resides in a logi-
cal computing level fully divorced from the physical computing level. The clean separation of logi-
cal and physical results in simpler and more flexible programs and faster, more easily scaled sys-

tems.

The benefits of using resource-oriented computing are not theoretical. Empirical evidence from

enterprise adopters of NetKernel consistently report the following:
+ Development time is measured in weeks, not months and years.
» Code required is 10x to 100x less than other approaches.
« Life-cycle costs are dramatically less because of inherent flexibility.
+ Systems typically run faster by a factor of three to four compared to Java J2EE.
+ Systems scale linearly with CPUs and cores.

1060 NetKernel release 3.1 is a mature, robust realization of the resource-oriented computing
model that supports software development from small scale systems to large enterprise and dis-

tributed systems.

Learning to develop software systems using ROC is not difficult, just different. It takes less time
to learn to use NetKernel than it does to learn J2EE. The return on learning the new approach is

considerable but, even more importantly, it's also a lot of fun!

For additional information about Resource-Oriented Computing, including ROC architectural

consulting services and training, please contact 1060 Research at www.1060research.com

© 2007, 1060 Research, Ltd 28 www.1060research.com

