
Your JSON APIs Suck
Or, how to have good taste in Porridge
RESTFest 2016

www.1060research.com (http://www.1060research.com)

Peter Rodgers

September 2016

Trend towards MicroServices

Power of Composites

⚫ Unix Philosophy: Make simple well formed things
⚫ Compose things to create new things

⚫ Engineering: A composite's value is greater than the sum of the parts

⚫ Beware "SERVICE"!!

⚪ WWW is Resource Oriented...

Monolith SOA Microservices

www.1060research.com (http://www.1060research.com)

⚫ Sometimes you hear "Microservices are just the Actor Pattern"
⚫ THIS IS WRONG

Resource Oriented Abstraction (WWW / REST)

⚫ Resources are logical abstractions
⚫ Objective is not to run code
⚫ Objective is to obtain a representation

www.1060research.com (http://www.1060research.com)

⚫ A resource is logical information. A resource is not the physical representation.

Example

⚫ Resource: "The story of Goldilocks and the Three Bears"
⚫ Valid representations:

⚪ Ladybird hardback book
⚪ Word of mouth
⚪ Supermarket kids paperback book
⚪ eBook
⚪ HTML webpage
⚪ Disney movie

⚫ Same resource multiple representations.

⚫ In the age of resource oriented APIs our challenge: what makes a good
representation?

What Porridge do we like?
⚫ Too hot
⚫ Too cold
⚫ Too sweet
⚫ Too salty
⚫ Too creamy
⚫ Not creamy enough
⚫ Too lumpy
⚫ ...

⚫ How can we judge when a representation is just right?

⚫ We could just "hack the porridge"

⚫ Or we could think about it...

www.1060research.com (http://www.1060research.com)

t=0, R = f(x)
Time goes on and things change:

t ➝ t' , x ➝ x'
To adapt to change we could recode

f ➝ f' , R = f'(x')

very brittle and very expensive

Much better to choose a representation for x such that:

R = f(x')
Or at the least :

R' = f(x')

where R ⊂ R'

Composable

Choices of Representation Model
⚫ There is no one true form of representation (remember Goldilocks)
⚫ Optimal engineering balance with composable representations

* This is why JSON sucks

JSON = hybrid of Map & Array

2 ways in which change causes f ➝ f'

Representation Composable

R' = f(x')

Domain Example

Atom Too small Assembly Language

Linear Array Insert / Append /

Prepend

LISP

N-Dimensional Array Insert / Append /

Prepend

MATLAB

MAP Key collisions Javascript Object

Notation *

Graph Requires State

to Process

RDF , Theseus

www.1060research.com (http://www.1060research.com)

Which one did we miss? The Tree

R = f(T1)

T1 ⊂ T2, R = f(T2)

T2 ⊂ T3, R = f(T3)

T1

T2

T3

If f uses
vector addressing

aka XPath

www.1060research.com (http://www.1060research.com)

Properties of the Tree
⚫ Formally Composable (avoiding collisions)
⚫ Iterable

for(n : "/a/b/c") { ... }

⚫ No state required to process (cf Theseus)

⚪ You always know where you are in a tree
⚪ If lost, just step up to parent

⚫ Arbitrarily extensible
⚫ Assertable (Validation)
⚫ Prunable (subset transforms are simple)
⚫ Invertable (leaf to node maps)

⚫ From a Total System Engineering perspective, trees
are really great representations

⚫ OK but can we prove it...

(http://localhost:1060/panel

/urn:org:netkernel:nkse:control:panel:developer)

⚫ How many microservices have you got?

⚫ There's a resource for that... active:moduleStats (http://localhost:1060/tools
/scriptplaypen)

Does anything else do this?
⚫ Is there another highy complex computational system that has the same engineering

requirements?
⚫ Constant change - imperative not to recode?

⚫ Chomsky Syntactic Structures (https://en.wikipedia.org/wiki/Syntactic_Structures),
1957

⚫ Linguistic Branching

⚫ Every human language conforms to the Universal Grammar.

⚪ Every sentence

⚪ Every word

⚪ Is a tree structure

⚫ Most everything you ever said or were told

⚪ Was a tree structure!

If

in

doubt
(or there is no overwhelming alternate justification)

use

a

Tree

NetKernel
⚫ NetKernel - Uniform Resource Engine

(http://www.1060research.com/netkernel/)
⚫ Microservices are only the start...
⚫ Resource Oriented Computing

1060 Research

⚫ Training
⚫ Consulting

⚪ Microservices
⚪ Resource Oriented Architecture

Contact

⚫ email: pjr@1060research.com
⚫ twitter: @netkernel

®

www.1060research.com (http://www.1060research.com)

