
Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

Abstract

Today’s software systems have a much shorter life span than other engineering arti-
facts. Code is brittle and system architectures are rigid and not robust to change. With
the Web an alternative model of computing has taken shape, a model that allows for
change on a small scale inside of a complex and large-scale system. The core abstrac-
tion behind the Web can be applied to the design of software systems. The abstraction
in Resource Oriented Computing generalizes the Web abstraction to enable the most
adaptable software systems and architectures that evolve with change.

1

Resource Oriented Computing for Adaptive Systems

Peter J. Rodgers, PhD, info@1060research.com

May 2015

1 Challenge

The second Law of Thermodynamics states that entropy will always increase. The challenge
faced by long-lived resource adaptive systems is to fight entropy with the least possible
expenditure of energy (physical, computational, financial).

2 Definitions
”Myriad computational
systems, both hardware and
software, are organized as
state-transition systems.
Such a system evolves over
time (or, computes) by
continually changing state
in response to one or more
discrete stimuli (typically
termed “inputs”). When in
a “stable” situation, the sys-
tem is in a well-defined one
of its (finitely or infinitely
many) states. At any
such moment, in response
to any valid stimulus,
the system goes through
some process, ending up in
another “stable” situation,
in some well-defined state.”
A. Rosenberg

It is helpful to start by stating some definitions so that we may clarify concepts such as
“stability” and “evolvability” as applied to adaptive computation systems.

It will be shown that we can obtain a useful working understanding of stability and
evolvability by considering computational state.1

We require to maintain a conceptual distinction between a given logical abstract potential
state and an instantaneous physical representation of the state. We do this by introducing
opaque identifiers such that any suitable resolution of an identifier will yield an adequate
representation of the state of the abstract resource it identifies.

2.1 Resources

We must also qualify the overloaded term “resource”. Historically resource has been used to
mean the computational system, its physical embodiment, constraints and capabilities. In
what follows we shall more frequently use the term resource to mean the abstract potential
state of a computational system – in this respect we are using the term resource in the way
that is now common with respect to the Web and RESTful systems. Where it is not possible
by the context to infer this distinction we will use italics to stress that we are referring to
the first historical form.

2.2 Stability and Evolvability

It follows that we may define stability and evolvability respectively:
Given identity I a system is stable under change if, when presented with I it yields a

representation R of the state of a resource and, when changed such that I now yields R’,
then R is still a sufficient subset of R’.

1”For an excellent treatment of the concept of ”state” in computation theory see A. Rosenberg”s ”The
pillars of computation theory: state, encoding, nondeterminism”.[3]

2

http://www.grc.nasa.gov/WWW/K-12/airplane/thermo2.html

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

The system is evolvable if, in addition, as the identifier I is itself changed to I’ then
requesting I’ also yields R’ or another representation R” such that R’ is still a sufficient
subset of R”

2.3 The Web

By these definitions the Web (REST) is a resource adaptive system that is both stable and
evolvable.

While the Web is an excellent exemplar of the properties we seek – it is not sufficient in
itself as an architecture or as an abstraction.

Notably it relies upon a globally agreed restriction on the set of I – due to the simple
flat address space provided by the DNS system. This restriction means that there is only an
implicit conception of scope and so limited flexibility in the range and domain of validity of
the set of identifiers, something that is essential in a computational system that addresses
anything other than quite limited problems.

Equally, the Web is physically embodied as a networked application mediated by the
HTTP protocol, which, while incredibly successful at macroscopic scale, is not suitable for
the nano- second latencies one encounters in software at the microscopic scale.

3 New General Computing Abstraction

What is required is a general abstraction, one which extends and generalizes the properties
inherent to the Web but which enables them to be applied to general computation.

3.1 Turing Tape

For the past seventy years we have accepted a model for software that inhabits a life “on
the Turing Tape”. Programs are encoded and execute on a Turing machine. Irrespective
of programming language or its paradigm (OO, procedural, functional), there is a tight
coupling between the code and the machine. We observe this in the universal acceptance of
the code-compile-link-execute life-cycle of software.

It follows that any change to the machine (its resources, environment, operating context
etc) require corresponding change in code in order to maintain a valid and stable computation
(by definition above). Even when the execution of the machine is itself virtualized.

3.2 Physical Decoupling

The Web shows us that a computation model can exist that does not bind tightly to the
execution environment of the Turing engine.

In the Web, each endpoint (computational unit) is linearly independent. Endpoints are
not physically coupled (as in linked code) but rather are logically coupled via the resolution
of resource identifiers (URIs).

It follows that a resource request in the Web may be satisfied by any sufficiently ca-
pable endpoint – irrespective of the encoding dialect, form or operating characteristics of
the underlying Turing engine. Furthermore the computational demands of any given logical

3

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

resource may be satisfied by any suitably configured engine – it follows that the Web seam-
lessly scales from very small computational units up to almost indefinitely large ensembles
of Turing engines. This property has become known by the term “Load-Balancing”.

3.3 Research Experience

We first began considering the observations presented above in the late 1990’s in the DEX-
TER research team at Hewlett Packard Laboratories. Indeed the challenges raised by the
DARPA BRASS research programme are the same motivators that have driven the last 17
years of our RD efforts.“Modern-day software sys-

tems, even those that pre-
sumably function correctly,
have a useful and effective
shelf life orders of magni-
tude less than other engi-
neering artifacts.” (DARPA,
April 2015)

Our driving vision can be very simply stated: The engineering qualities of software are
poor. In particular, classical software lacks the ability to adapt to changes in both the
environmental execution context and operational platform. This is in stark contrast to the
Web; an architecture which has demonstrated long term stability, continuous evolution and
is robust in the face of both types of change.

3.4 ROC Abstraction and NetKernel Platform

Our research has led us to develop the Resource Oriented Computing (ROC) paradigm. ROC
extrapolates the core elements of the Web model and generalizes them in order to provide a
computational model that seamlessly accommodates change in both software and hardware.

We have developed a computing abstraction we call “Resource Oriented Computing”. A
mature implementation of the ROC abstraction is offered in the form of the NetKernel
ROC platform.

The ROC abstraction generalizes the Web’s REST abstraction so that it may be applied
to general computation. The NetKernel embodiment exhibits the properties of stability,
evolvability and scale invariance that we observe in the Web architecture.

It will become apparent that the ROC abstraction provides a uniform and complete model
for arbitrary resource adaptive computation. In order to recognize the general potential of
the ROC approach we must first show how it relates to the Web and how it generalizes
beyond it.

4 Description of the Web Abstraction

The essential elements of the Web abstraction are depicted in Figure 1 below.In 1994, Tim Berners-Lee’s
proposals for HyperText im-
plicitly introduced the idea
of a URL as a short string
representing a resource that
is the target of a hyperlink.
(from Wikipedia)

We may consider the global World-Wide-Web as a logical uniform address space. A par-
ticipant (browser, software user-agent) may interact with the space by forming an identifier
for a resource in the space. In the Web these are commonly URLs, a subclass of the general
URI identifier structure.

In fact the address space of the Web is not physically real – there is no “Web Space”.
Rather the space logically exists as a consequence of the structure of the URL possessing a
resolvable host name.

A participant in the Web must resolve the host name against the DNS system in order to
locate a physical endpoint that will accept a request for the resource identified by the URL.

4

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

Figure 1: The Web Abstraction

Having resolved a physical host, the par-
ticipant constructs a request and furnishes
it to the endpoint. In the Web this interac-
tion is mediated by the HTTP protocol over
a TCP/IP network.

An endpoint that is resolvable by this
URL has committed to provide a represen-
tation of the abstract resource that is iden-
tified. It is of no-concern to the Web ab-
straction how the endpoint achieves this. In
the early Web it was common for endpoints
to implement static mapping to files. Today
it is common for the endpoint to be imple-
mented as some form of software container
that will compute a representation of the
state of the resource.

4.1 Resolving Logical Abstract
Resources

It is very important to emphasise that the
detail of the implementation of the endpoint
is entirely irrelevant to the Web abstraction.
All that is necessary is that ultimately a Web endpoint must return a representation of the
state of the logical abstract resource to the requestor.

It is understood from the REST architectural style [1] that it is desirable that an endpoint
should be stateless and that any necessary state required to compute a requested resource
should be transferred to the endpoint when it is requested – we shall see below that the
principle of state transfer is very important in resource adaptive systems.

The Web is the most successful software architecture that has yet been devised. It has
continuously evolved and adapted to change for more than twenty-five years. By being iso-
lated from concern over the implementation detail of endpoints it exhibits total independence
from the computation resource (physical platform, network topology etc) employed to deliver
the system. Indeed the same logical system proves stable under continuous adaptation of
the underlying physical compute resource.

4.2 Logical Information Resources

The innate resource adaptive property of the Web is readily illustrated by the simple ob-
servation that the resource http://www.google.com was at one point provided by a single
endpoint on a single server - it is now provided by hundreds of millions of endpoints on
tens of million servers. The essential logical information resource has remained uniformly
consistent and stable and yet, the complete solution that is the “Google Application”, has
simultaneously undergone continuous evolution (here we use resource, stable and evolvable
by our earlier definitions).

5

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

5 Description of the ROC Abstraction

The Resource Oriented Computing abstraction derives from and generalizes the Web abstrac-
tion. Its objective, unlike the Web, is not to enable a networked application, but rather to
provide a uniform abstraction for arbitrary computation – both local within a single physical
compute resource and across networked cloud platforms.

5.1 Fundamentals

Figure 2: ROC Abstraction

Before we can understand how
general computational applications
may be developed we must first de-
scribe the fundamentals of ROC. It
is apparent that the essential ele-
ments of the Web discussed above
are also present in the ROC ab-
straction.

A requestor desiring the state
of a resource forms an identifier,
the identifier is resolved in an ad-
dress space to an endpoint that will
accept the request. The detailed
implementation of the endpoint is
of no concern, what is required is
that it must return a representa-
tion of the state of the logical re-
source to the requestor.

The first way in which the ROC
abstraction differs from the Web
abstraction is in making explicit the nature and role of the address space.

In the ROC abstraction an address space (henceforth simply called a space) explicitly
provides a means to resolve a logical resource identifier to a physical representation. This is
not a semantic nicety – unlike the Web in which the space may only be inferred due to the
nature of DNS and TCP/IP network, an ROC space is tangible and has an explicit role.

It is apparent that without the Internet as the medium (remember we are discussing a
general computing abstraction not a networked application), we must consider the means by
which a space should determine the resolution of identifier to representation.

Just as with an endpoint, the ROC abstraction is not prescriptive about the embodiment
of a space, however our experience has shown that it is valuable to associate a grammar with
an endpoint. We define a grammar as a pattern matching language such that when it is
presented with an identifier for a resource it determines if the identifier should be accepted
by the associated endpoint.

5.2 ROC Generalizes Web Abstraction

It is apparent that in the Web, the interaction between the user-agent, the URL, the host
name part and the DNS to locate a physical host endpoint fulfils the role of a grammar.

6

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

Our experience of ROC solutions allows us to recognise that a grammar establishes a
contract between a space and an endpoint. A grammar is a promise that if a specific resource,
or more usually, set of resources is requested, then the given endpoint will be assigned
responsibility to reify the representation state. The NetKernel platform provides several
grammar languages, ranging from simple pattern matching through to expressive BNF-like
syntaxes.

Typically a space will perform a linear search in order to resolve the resource identifier;
presenting a resource identifier to each endpoint grammar in turn to determine a match. We
will see below, that while non-linear resolution is not excluded, it is highly advantageous to
perform the resolution in a linearly deterministic fashion.

It is apparent that the ROC abstraction generalizes away from the implicit special case
of the Web and the physical heritage of its logical global address space. Additionally, and
most significantly, the ROC abstraction makes a further extension beyond the Web.

5.2.1 Removing Limitations

In ROC, the limitation of, and adherence to, a single logical space is lifted. An ROC
solution may consist of any number of spaces. We shall show below that the lifting of the
single space constraint introduces the opportunity to formally determine and dynamically
adapt operational context. Our experience has taught us that control and understanding of
context is a critical requirement in any long-lived resource adaptive system.

5.3 Spacial Multivalency, Scope and Context

Figure 3: Import

Without the limitation of a single space we
are free to create higher-order architectures
consisting of relationships between spaces.

The simplest mechanism to create a
higher-order structure is to implement an
endpoint, such that, when requested to re-
solve an identifier by a first space, rather
than deploy a grammar it delegates the res-
olution to a second space.

Implementations of this pattern are col-
lectively known as “imports”, since it is ap-
parent that conceptually the requestor in
the first space is able to resolve the resources
of the second space just as though they were
present in the first space. The resources
have been “imported”.

It should be noted that this notion of im-
port is unlike the classical model we have be-
come used to with programming languages.
An import is an endpoint and the indirec-
tion it provides to the second space may po-
tentially be dynamic. We shall see below,
that there are many possible embodiments

7

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

of the import pattern and the routing performed by an import endpoint may be dynamically
determined by the state of some resolvable resource, or, commonly, many resources.

The uniform treatment of imports in the resource resolution process leads to significant
breakthroughs in the evolvability and stability of resource adaptive systems.

Returning to our consideration of context. It is apparent that the ROC delegation of
resolution via imports, and the multivalency of spaces, enables an emergent determination
of spacial locality. A request issued in one space, may be delegated through numerous
spaces before it is ultimately resolved to an endpoint establishing an operational context for
any given computation. Knowledge of the spacial structure determined during the process of
resolution is extremely valuable and provides the scope in which subsequent resource requests
may themselves be resolved.

5.3.1 Formal Context of Operation

The emergent dynamic discovery of spacial scope establishes a formal context of operation.
However to appreciate the significance of this we must step away from our learned under-
standing of scope inherited from our experience of programming languages.

Here, we are not discussing the lexical or dynamic scope of variables or functions in a
specific programming language coding model. We are describing a spacial structure in which
potential logical resources may be requested. The form and function of the application to
which the resources belong is therefore determined by the arrangement and structure of the
spacial architecture that constitutes a solution.

To more clearly understand the potential of emergent spacial scope, it is useful to view a
typical ROC resource adaptive application architecture. Figure 4 (next page) shows a view of
a dynamic emergent ROC application architecture. Shown at the center is an enlargement
of the red highlighted region. At this scale it can be seen the entire solution consists of
elemental ROC spaces housing resolvable endpoints.

5.3.2 Decoupled System

The system is entirely decoupled, in that, the lines shown connecting spaces are not static
bindings but rather potential logical resolution routes established by various embodiments
of the import pattern.

To more clearly understand the potential of emergent spacial scope, it is useful to view a
typical ROC resource adaptive application architecture. Shown center left is an enlargement
of the red highlighted region. At this scale it can be seen the entire solution consists of
elemental ROC spaces housing resolvable endpoints.

Without hands-on experience of ROC, the architecture depicted in Figure 5 appears to
be very complex. Indeed what we are viewing is not the full story - we are seeing only a
simplified slice through this multidimensional spacial architecture. The slice we have shown is
the relevant application context for the left-hand most space (that space contains an external
transport endpoint - in ROC such an arrangement is called the “fulcrum pattern”). If we
were to view the full N- dimensional structure of this ROC system it would be an order of
magnitude more complex again.

However it is important to emphasise that the observed complexity is emergent, and that
this high- level perspective represents a broad view that results from the combination of
many simple and orthogonal ROC patterns. Furthermore, an experienced ROC architect is

8

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

Figure 4: Snapshot view of a dynamic ROC application architecture taken with the NetK-
ernel space explorer tool.

9

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

able to recognize and gain understanding of these systems simply by visually inspecting the
high-level spacial structures.

Examining the example shown above, we might consider that the spaces shown are the
result of rigid physically predetermined configuration. It is important to emphasise that a
space is a lightweight construct and indeed it is a common pattern to construct ephemeral
spaces on a per request basis. In the limit, it is in fact a capability of NetKernel to dynami-
cally compute a complete ROC spacial structure, even on a per request basis.

5.3.3 Very High Reuse of Software

One final set of observations. It is important to recognise that in ROC solutions each
individual space is linearly independent and so may simultaneously provide its services to
many other architectural topologies – this property, combined with formal stability, results
in software that exhibits very high reuse as evolution and adaptation is introduced.

Furthermore, since the architecture is logically defined and not physically linked, the
structure may be dynamically modified. It follows that configurations of spacial architecture
may be deployed or changed collectively without restarting a system (hot-deployment).

Lastly, it will be shown below that the dynamically coupled nature of ROC solutions
allows specialized engineering constructs within an architecture to be dynamically adapted
based upon the state of the underlying computational resource. This property results in
software that is intrinsically resource adaptive.

We hope that, having established how ROC generalizes from the Web, it is apparent
that ROC automatically inherits the Web’s properties of stability and evolvability. These
properties allow such complex systems to progressively evolve and adaptively respond to
change.

5.4 The Web is Passive

We have necessarily taken some time to establish the core principles of the ROC abstraction.
We are now in a position to consider how it is applied in practice and its relevance as a
platform for resource adaptive solutions.

At this point one might reasonably ask, “So where is the code?”

We discussed earlier how in the Web, an endpoint is typically embodied as a black-
box software container. So too in ROC. An endpoint within an ROC space is a software
container. Its requirement is, when resolved, to receive a resource request and compute a
suitable representation of the resource state.

From our experience of the Web, this does not at first appear to be a promising prospect.
Our experience of the Web is influenced by its early history as a publication application.
Indeed the primary tool we use to interact with the Web is still called a “Browser”. Our
experience of Web endpoints is that, while they may be implemented as dynamic software
containers, they are “different to programs” in that they predominantly provide limited
snapshots of the state of resources - often really just transformational views of back-end
database state. Our expectation of the Web has become constrained by the “database-
backed” Web-site paradigm.

10

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

Additionally, our expectation of an endpoint is further limited by our historical experience
that software is an encoding that executes within the constraints of a specific underlying
Turing engine. We live “on the tape” within a language and employ the classical code-
compile-link-execute paradigm. Software solutions do not “step off the tape”?2

We shall now show that the Resource Oriented Computing abstraction permits us to
break free from these constraints.

5.4.1 Dynamically Computed Resource State

An active resource oriented system should allow us to dynamically cause resources to interact
– we desire a system in which it is possible for one resource to transform another and another
and another... in a potentially indefinite cascade of dynamically computed resource state.
In fact, the resource oriented abstraction permits exactly this dynamic active computational
model. It does this by making one simple step – it admits that an endpoint is not simply
an exit-ramp to a specific software container (Turing engine), it may just as well act as a
requestor for resources, a symmetrical on-ramp back to the ROC abstraction (we saw hints
of this earlier in the discussion of the import pattern).

It is apparent that, in order to satisfy an initiating request, a symmetrical endpoint can
construct and issue further resources requests in order to use the requested resource state
in the computation of the state of the initial resource request. We start to see that ROC is
a world in which we can say “do this to that” or “do this to that with that and that” etc,
etc. This is possible because ROC is a world in which stateless endpoints are able to acquire
transferred state in order to perform arbitrary general computations. The desirable RESTful
property of state transfer is preserved and generalized in the ROC abstraction. However,
in order to express the rich interplay of an active computational resource model we must
consider a suitable way to identify resources.

It is clear that the familiar URL is inadequate – its linear path-like structure betrays its
publishing/file-oriented heritage. That said, it is clear that a singular triumph of the Web
is that the URI is a stable, well understood, well formed unambiguous identifier structure.
Therefore some form of URI would be a natural candidate for ROC.

5.4.2 Active URI

In 2004 1060 Research submitted a draft specification to the IETF for a new class of URI.
One which would provide us with the ability to specify the identity of actively computed
resources. We call this an “active URI”. Endpoints and spaces in the NetKernel platform
make extensive use of active URIs.

2An interesting theoretical discussion to extend the paradigm of the Turing tape as an ”interactive Turing
machines with advice” has been put forth by Leeuwen and Wiedermann. Their considerations are in several
ways akin to the ROC implementation.[5] Moshovakis underscores the importance of such a conceptual over-
haul: ”The Church-Turing Thesis grounds proofs of undecidability and it is essential for the most important
applications of logic. On the other hand, it cannot be argued seriously that Turing machines model faithfully
all algorithms on the natural numbers. If, for example, we code the input n in binary (rather than unary)
notation, then the time needed for the computation of f(n) can sometimes be considerably shortened; and if
we let the machine use two tapes rather than one, then (in some cases) we may gain a quadratic speedup of
the computation. This means that important aspects of the complexity of algorithms are not captured by
Turing machines.[2]

11

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

For details we refer you to the IETF “active URI” draft specification, however a very
brief introduction can be given with some examples...

a c t i v e : s e r v i c e+resource@http :// host /path
a c t i v e : trans form +operand@foo+operator@baa

a c t i v e : language+code@some−code
a c t i v e : groovy+operator@res : / s c r i p t . gy+th i s@foo+that@baa+other@baz

The active URI consists of the “active:” scheme preceding a named service, followed by
any number of name-identifier pairs united by an @ character (name@identifier), each pair
is delimited by a + sign, each named identifier may itself be a URI.

An endpoint with a grammar that is capable of recognising and parsing the active URI can
very easily construct requests for the named resources (the identifier in the name@identifier
pair). It can be seen that the named resources in the active URI act as “resource arguments”
to the endpoint. The state of the resources referenced in the arguments can be requested
(transferred to the endpoint) in order for it perform is computation.

5.4.3 Language Runtime

One immediate consequence is that our constraint of being confined to a single Turing ma-
chine is lifted. We may implement address spaces in which resolvable Turing machines im-
plementing execution environments for numerous coding languages are present (this pattern
is called a “language runtime”).

5.4.4 Code State Transfer

Figure 5: Language Runtime Pattern

A runtime is requested using an active URI
in which one named argument is the identi-
fier of the resource that is the code we wish
to have executed. The runtime issues a re-
quest for the code resource and then exe-
cutes it. This pattern is called “code state
transfer”.

To complete the overview, the executing
runtime code has access to the initiating re-
quest (and thereby its other arguments) and
equally has the ability to request further re-
sources etc. Hence code executing in a lan-
guage runtime is fully capable of complex
computations.

Figure 5 shows a depiction of the lan-
guage runtime pattern and shows how the
total computation is not local to a sin-
gle Turing engine but may be distributed
through the contextual address space.

The NetKernel platform, while natively
written in Java, provides dozens of language runtimes that utilize this pattern. Languages

12

http://tools.ietf.org/id/draft-butterfield-active-uri-01

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

supported include Turing complete languages such as Groovy, Python, JavaScript, Ruby,
Clojure, Java, XSLT, Xquery, DPML... together with several compositing languages use-
ful for compositional operations on resources, as well as many domain specific languages,
database query languages and more prosaic basic transformation tools.

Solutions are built by writing code, but it is apparent that code itself is a resource.
Systems are adaptive and evolvable because the code that they execute is of the same form
as the resources that are modelled in the computations performed by the system. In ROC
everything is a resource.

Before we conclude, it is worth pointing out further significant properties of the active
URI. It is multi-dimensional allowing complex resource models to be developed without
being confined by a structural straight-jacket. Additionally, by expressing arguments by
name rather than position, it is order independent. Lastly, it is recursive, in that any given
active URI is also the identifier of a resource (every computation has an identity). It follows
that an active URI may be a named argument of an active URI (provided suitable care is
taken to escape delimiters). For example...

a c t i v e : s e r v i c e+re source@act ive : trans form%2Bfoo@baa

In NetKernel, the active URI provides a resource oriented “bytecode” and, if appropriate,
extends the potential of the ROC abstraction to offer a functional programming model that
is extrinsic to the Turing engine.

It is hoped that the significance of code state transfer to the problem of resource adaptive
systems is recognized. The ROC abstraction allows that the entire computation of a given
problem is dynamic and the program code itself is consistently modelled as resources within
the abstraction. It follows that it is trivial to implement solutions in which code is a dynam-
ically generated resource, which may be generated based upon the state of further resources
including resources whose state depends upon the core underlying state of the computational
platform resource. ROC presents a self-consistent platform for resource adaptive systems.

5.5 Application of the ROC Abstraction

What has been presented above has covered the foundational concepts of the ROC abstrac-
tion. Establishing the core elements of spaces, endpoints and resource requests. It was
shown, in the language runtime discussion, how the simple elements of ROC combine to
allow the conceptual understanding of how software systems are structured to be radically
rethought.

It was shown that dynamic determination of spacial locality results in a contextual scope
for execution. It can be seen that a language runtime operates within this dynamic contextual
scope. As can be inferred from the example of a typical ROC architecture presented in Figure
6, this property leads to significant breakthroughs in architectural patterns, engineering
constructs and the enhancement of the engineering qualities of a solution.

We do not have sufficient space to discuss in depth the wide range of consequences that
lead directly from the ROC abstraction. Below we provide a small selection of the more
important items including several examples of how resource adaptive analytics are available
as part of the NetKernel tool set:

13

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

5.6 Systemic Memoization

In ROC all computation occurs by issuing requests for resources. It follows that the result of
every computation has an identifier (and contextual scope). In addition, state transfer via
the extrinsic cascade of sub-requests in the ROC domain means that the ROC abstraction
does not admit side- effects.

These properties mean that the ROC system guarantees systemic referential integrity
– that is, the state and dependencies of all computation is measurable and unambiguously
understood.Memoization is a way to

lower a function’s time cost
in exchange for space cost;
that is, memoized functions
become optimized for speed
in exchange for a higher use
of computer memory space.
The time/space ”cost” of al-
gorithms has a specific name
in computing: computa-
tional complexity. All func-
tions have a computational
complexity in time (i.e. they
take time to execute) and in
space. (from Wikipedia)

It follows that an ROC system may cache the results of all computation and, by suitable
determination of equivalence, we may systemically eliminate redundant computation. In
ROC this is called “systemic memoization”.

It is beyond the scope of this document to discuss in depth, however it should be noted
that the NetKernel platform employs a unique ability to automatically invert pass-by-value
(push-state- transfer) to pass-by-reference with adapted scope (pull-state-transfer). This
automatic inversion means that transient computational state acquires the same referential
integrity as any other resource, therefore it is not possible to have out-of-band side-effects
that would inhibit memoization.

The diagram below shows a small snapshot of the dynamic distribution of cached resources
in a live system captured with the NetKernel Cache Heatmap Analytics Tool. Darker colours
indicate stronger regions of caching. What is noteworthy is not that there are hotspots, rather
that we always observe is that there are more coloured spaces than not. This indicates that
the system is automatically discovering dynamically reusable state almost everywhere in our
multi-dimensional architecture.

Figure 6: Cache Heatmap

The performance implications of systemic memoization are profound. Software systems
are connected to the real world. The real world exhibits natural statistical distributions.
ROC solutions are able to discover and manage the optimal real-time computational state

14

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

corresponding to the external statistical distribution demanded of it. In short, any redundant
computation, at any scale can be tracked and eliminated.

It follows that, paradoxically to our experience, software that is indirectly coupled through
the resource adaptive resolve-execute two-phase model of ROC is very often far higher per-
formance.

We may understand this “paradox” with the following observation – the optimisation
strategies of classical software (compiling, linking, JIT optimisation) have been concerned
with making the transition between one function A and another B as efficient as possible –
ROC simply says, in the real world, frequently the shortest route from A to B is to know
that you are already at B.

For the academically inclined, it is worth noting that the effect of systemic memoization
reaches beyond applied real-world problems. Our research indicates that the complexity
of classically high-order algorithms can be dramatically modified when implemented in the
ROC domain. The change may be achieved by implementing an algorithm in such a way
that, rather than executing with local recursion (within the same code), we instead use ex-
trinsic recursion (self-referential resource requests through the ROC domain). While the
algorithm is identical, the route taken to determine the computational result is vastly differ-
ent. Surprisingly, even algorithms as pathologically extreme as the Ackermann function, are
more efficient in the ROC domain.

5.7 Linear Scaling with Mulit-core Architectures

Figure 7: Scaling

Endpoints are stateless computation en-
gines. Representations are immutable snap-
shots of the state of abstract resources.
These properties allow the Web to imple-
ment load-balancing as a seamless adaptive
scaling strategy.

ROC systems allow us to use the same
strategy, both to scale out over distributed
systems, but also, significantly, to scale-up
on multi-core hardware architectures.

The NetKernel micro-kernel is able to
load-balance execution threads efficiently
over the available physical (or logical) com-
pute cores. As more cores are added, the
NetKernel platform automatically linearly
scales up to utilize the increased capacity.

5.7.1 Software Load Line

Figure 7 shows the results of the NetKernel platform’s Linearity Analysis Tool. It can be
seen that this example system has 8 cores. As concurrency is increased the system maintains
a flat response time and linear increase in throughput. Once all 8 cores are occupied, the
kernel fairly allocates the computations across the cores, throughput stays constant while the
individual response time of a single request increases. There is no magic in parallel processing,
the total computation is the sum of the available cores – when demand exceeds capacity you

15

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

must either increase cores or, as is straightforward in ROC, introduce engineering constraints
to shape the computational distribution.

Figure 8 shows the Linearity Analysis of the same software configuration but this time
deployed on a high-end virtual cloud compute platform operated by a well known cloud
computing vendor. It can be seen that up to seven concurrent requests the system behaves
linearly. However, when concurrency exceeds 8 requests things start to behave strangely –
recall this is the same software stack as shown in Figure 7.

Figure 8: Linear Analytics of Physcial 8 Core
System

Surprisingly as concurrency increases
further the total net throughput reaches
equilibrium at about 50 percent of the maxi-
mum capability of the system. This strongly
indicates that external throttling has been
applied to this virtual machine (or put an-
other way-we are getting half of what we
paid for).

It follows that a very sensible engineer-
ing strategy would be to configure the ”soft-
ware load-line” so that concurrency is locked
at the peak throughput (7 concurrent re-
quests). We shall see, following the discus-
sion of the overlay pattern below, that it
is trivial to introduce dynamically adaptive
software throttles in NetKernel solutions.

The ability to introduce adaptive soft-
ware throttles is an example of a large class
of resource adaptive patterns that are readily available in the NetKernel ROC platform.

5.8 Set theoretic functions

5.8.1 Overlay

We must briefly introduce the overlay pattern since this construct is the basis for a large
number of elegant engineering solutions.

Figure 9 shows the overlay pattern. It can be seen that it is an arrangement of two spaces
whereby, somewhat like the import pattern, the routing of requests between the spaces is
mediated by an endpoint (called the overlay).

An important characteristic of this pattern is that the space to which the overlay routes
requests is entirely encapsulated by the overlay endpoint. In practice, the endpoint is even
responsible for instantiating the inner space.

We can see that the overlay endpoint may be configured to project all of the resources of
the inner space as resolvable entities to the outer space – somewhat as an import projects
the resources of the imported space. This arrangement is called a ”transparent overlay” - the
requestor and inner space have no awareness that the overlay exists. However the overlay is
there and can choose to arbitrarily deal with any requests that it resolves.

We can see that this pattern is very elegant for such tasks as providing secure trust
boundaries in an architecture, for non-functional analytics capture, reporting, diagnostics etc

16

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

etc. It is also apparent that the dynamically adaptive software throttle that was introduced
in the earlier section is in fact embodied as a simple transparent overlay.

Figure 9: The Overlay Pattern

Alternatively an overlay may choose to
present its own “resource interface” to the
outer space. That is, it may appear as one
or more logical endpoints to requests issued
in the outer space. If it chooses to accept
a request, the overlay may be configured to
actively transform the outer request to a dif-
ferent inner request. This arrangement is
called an “opaque overlay”.

5.8.2 The Mapper

One extremely valuable class of opaque over-
lay is the “mapper”. A mapper consists of
logical endpoints each with a declared gram-
mar. Upon resolving a request with a gram-
mar, the mapper endpoint applies a trans-
formation in order to map the identity of
the outer resource to the identity of an in-
ner resource. In practice both the grammar
and the identity transform can be expressed
with declarative expressions, resulting in a
powerful construct that requires no formal programming language.

It is not at first clear, but the mapper is in fact forming a mapping relationship between
one set of resources (outer) to another set of resources (inner). More formally the mapper
pattern provides a formal set-theoretic function (mapping between sets) and, unlike the
rigid imposition of functions determined by the syntax of formal programming languages,
supports any of the well understood categories of mathematical function: injection, bijection,
surjection.

When considering resource adaptive solutions, it should be noted that the implementation
of the mapper provided with NetKernel has a very significant property - the configuration
of the mapping is itself a resource. That is, just as for example with code-state transfer, the
mapping is requested as a resource and therefore, if required, may be dynamically computed.

It follows that the mapper provides a very elegant means to formulate extremely powerful
dynamically adaptive solutions. More particularly, when considering the formal definitions
of stability and evolvability presented at the beginning, it can be seen that the mapper offers
I to R and I to I’ transformations and therefore, by our definition naturally facilitates long
term stability while being a catalyst for continuous evolution.

5.9 Dynamic Import Patterns

It has been previously stated that within the ROC abstraction “everything is a resource”.
We shall now show how this is true even to the level of the architectural configuration of the
software.

17

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

It is understood that a resource adaptive architecture must expected to be frequently
(even dynamically) updated. For example one simple cais to deploy a new module with an
enhanced capability to a system.

The usual way we would accommodate such a change would be to provide a reference
to the new capability by importing it into a suitable architectural context – for example
exposing an application to HTTP requests in a space containing an HTTP transport. The
problem here is that we do not wish change in one part of our architecture to require change
in another in order for it to be adopted.

In classical software, we have learned that the only way to introduce the capabilities of
new functions is to declare an import in the location where we wish to access them. This is
not the case in ROC.

The requirement for dynamically adapting configuration is common in ROC solutions.What
is required is an import which is not statically declared, but which is dynamically configured,
a “dynamic import”. Everything is a resource, therefore the configuration of the dynamic
import is also a resource.

On first consideration a dynamic import might appear to be rather similar to a regular
import – for example in the case where only one import space is specified then they are iden-
tical. However recall that the configuration is a resource, therefore we are free to construct
a solution in which the dynamic import configuration is itself dynamically computed.

Clearly there are many many ways this could be achieved – a very basic approach would
be to have the configuration generated from an externally supplied state of a database, or
another system, or even from the results of analytics of the system resources. The opportunity
to provide dynamically adaptive solutions is very big.

One pattern that has proven to be extremely powerful is to apply a resource discovery and
aggregation pattern. Imagine you have an architectural construct that is expected to offer a
very long term stable structure – for example a transport and throttle arrangement. When
we add a new capability to our system we want it to be exposed to the stable configuration
– but we don’t want to touch that configuration (either to preserve stability, or because it is
none of our concern).

We can solve this problem by instantiating a dynamic import but we also provide a
companion endpoint that dynamically computes the import configuration. The companion
endpoint performs a space by space search making a request for a specified resource in every
space in the system. If a space has the resource, and the state of the resource indicates that
it is of interest, then that space’s identity is added to an aggregation. When the search is
complete the aggregated set of space identities constitutes the configuration for the dynamic
import.

Figure 10 shows a schematic depiction of the Dynamic Import Pattern. One can see that
all spaces that have resource X are imported.

Though it may appear straight forward to construct this pattern, from a classical software
perspective it is impossible and cannot be done. Simply put, the dynamic import pattern
is a non-deterministic computation in which the spaces and resource state of the software
system are dictating the structure and architecture of the software system! This should not
work, and indeed it could not without the properties of the ROC abstraction.

The dynamic import is a very powerful and efficient ROC construct. It is able to work
because it is an intrinsically resource oriented pattern. When the search is performed, a
space that is unstable (for example it is booting) may be deferred from the search, the

18

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

Figure 10: Dynamic Import Pattern

search proceeds non-deterministically, attempting to find import resources in spaces as and
when they are sufficiently stable to be able to respond. It turns out that as the system
evolves it anneals and the dynamic import resource is computable. Furthermore since the
configuration is a resource and the space’s import hook (the X in the diagram) are resources
then we are able to compute a dependency model (as with the caching above). It follows
that if the state of any of the X’s changes – e.g. the space goes away, or someone decides not
to be imported – then the aggregate import resource is invalidated and the import search
aggregation is recomputed. The dynamic import is truly dynamic.

To the classical eye this may appear like witchcraft. However our experience and widespread
use of this approach shows that it is a very elegant and robust engineering pattern. It raises
profound questions about our expectations of, and the balance between deterministic and
non-deterministic computation. Our experience indicates that given suitable boundary con-
ditions a non-deterministic route to computational structure is entirely valid and desirable.

It will be apparent that this model of dynamic resource-oriented adaptive architecture is
of great consequence in the implementation of resource adaptive systems.

5.10 Transreption: Entropy Minimization

In the discussion so far we have discussed the ROC abstraction but have not considered what
form the representation of resource state should take. This is in contrast to the classical soft-
ware model where the type of objects and member variables is often the first consideration.

In ROC the representation that is computed by an endpoint is not proscribed.

Frequently similar regions of a computational system will choose to adopt common struc-
tures for their representation. We call this a “resource model”.

Similar economic interest in common exchange formats occur quite naturally in ROC
solutions – in NetKernel there are for example collections of tools for processing XML,

19

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

images, RDF, strings, Wiki markup, HTML, database result sets, hierarchical structured
data (HDS) etc.

This common typing alliance has a long heritage and can, for example, be observed in
the interplay of tools in Unix that interoperate through the exchange of line-delimited ASCII
files.

However within software there is much more opportunity for type variation than in a
file-based operating system. How does an ROC solution avoid the long-term “type-death” of
disparate endpoints being coded to different representational object models? This problem
is especially pertinent to the long-term evolution of resource adaptive systems.

In the Web, the typing problem is less acute since the network transfer of state demands
that ultimately all state must be serializable binary streams (just as in Unix all represen-
tations are binary file streams). Even so, the REST architectural style makes great play in
the provision for user-agents and browsers to be able to perform content negotiation based
on MIME-type preferences.

ROC also provides a form of content negotiation – however as with the ROC abstraction it
generalizes beyond the recommendations of the REST style and is applicable to the internals
of software where objects have very real and very varied structures.

In ROC an endpoint that constructs a resource request must specify its identifier, it may
also provide an indication of a preference of representation type.

The resolved endpoint may choose to examine the preference and adapt its implementa-
tion in order to return the preferred type. However, it will be understood, that as a system
evolves, the necessity to accommodate more and more (N) types leads to an N-squared
increase in the complexity (and brittleness) of the solution.

It is far more desirable to permit a resolved endpoint to ignore the preferred type and
to compute and return its representation in whatever form was deemed appropriate when it
was created.

In ROC this potential problem is solved as follows. If the returned representation does
not match the requested type, the NetKernel microkernel will step in. It will automatically
construct and issue a new request, with a special verb, this request asks the spacial ROC
domain to resolve an endpoint that will provide the necessary transformation between types.

However this mechanism cannot permit arbitrary transforms – recall that representation
state must remain immutable in order to guarantee referential transparency (and unsynchro-
nized concurrency).

Endpoints that perform transformation of representations must guarantee that the infor-
mation of the resulting representation is identical (isomorphic) to the original. That is this
is a lossless transrepresentation. This generalized requirement did not have a historical name
and so in ROC the formal expression transrepresentation has, with use, become shortened
to “transreption”.

It follows that transreptor endpoints can be supplied such that as one resource model
interacts with another the representations are dynamically transrepted.

At first it appears we have simply shifted the N-squared type problem to another place.
However in practice transreptors may choose to accept a request even if they only match on
the destination type, they may in turn request the incoming representation in a preferred form
that they are able to process, in this case the kernel intervenes again and constructs another
transreption request. It follows that the ROC abstraction facilitates automatic chaining of
type transformation. In practice this property means that the N-squared problem is typically

20

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

simplified to linear complexity.

When all state is transferred to stateless endpoints it becomes apparent that many con-
cepts in classical software become unified. For example, parsing a stream to an object model
is a transreption, as too is compiling human readable code to machine executable byte-code,
even serialization is a form of transrepresentation.

In fact transrepresentation is an essential requirement of any computational system – it’s
just historically we didn’t have a uniform abstraction in which to place it. But we can go
further.

If we recognize that ROC is providing a dynamic computational state space, we can
understand that ROC’s systemic memoization acts so as to minimize the total computational
energy cost of a system. It follows that we may also understand that transrepresentation is
acting so as to minimize the total information entropy in the system.

A transrepresentation transforms structure that is not suitable for an endpoint into a
structure that is – that is, a high entropy structure is reordered into a low entropy structure.

Recalling our opening statement:

By the 2nd Law of Thermodynamics we know that entropy will always increase. The
challenge facing long lived resource adaptive systems is to fight entropy with the least possible
expenditure of energy (physical, computational, financial). We hope that it is apparent that
the Resource Oriented Computing abstraction offers a unique ability to adaptively respond to
change whilst requiring, as close as is practicably possible, the minimum energy expenditure.

6 Description of the NetKernel Platform

The NetKernel platform is a modular Java-based system. It requires only a standard Java
runtime to execute and can operate with as little as 1-2MB of heap. Figure 11 shows the
schematic diagram of the NetKernel platform.

6.1 Microkernel

The core of the system is the microkernel – this implements and embodies the ROC abstrac-
tion. As we have learned above, the primitive elements are spaces, endpoints and requests.
Just as HTTP provides the mediation of Web requests, so the NetKernel micro-kernel me-
diates ROC requests. Implementing the two-phase resolve-execute cycle inherent to ROC.

6.2 Caching

Working closely with the Kernel is the NetKernel cache. This cache provides systemic mem-
oization. All computation at all scales are potentially cacheable in NetKernel.

A small bootloader is used to initiate the NetKernel system – typically a complete NetK-
ernel application server configuration boots in 2 or 3 seconds.

Above the Kernel is a Layer0 – this provides specific technologies required to physically
implement a working ROC abstraction. For example it provides support services to enable
modularity, physical Java classloaders and several implementations of grammar that may be
used by endpoint for request resolution.

21

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

Figure 11: Schematic of the NetKernel platform

6.3 Foundation API

Above Layer0 is a the NetKernel Foundation API – this layer provides a Posix-like abstraction
to ensure low-level details of the implementation are cleanly separated from the higher level
space and endpoint implementations.

6.4 Modules

The Standard Module provides infrastructure to implement modules. A module is a physical
container providing embodiments of spaces, endpoint and, as required, resources (such as
code, configuration, static files etc etc). The Standard Module also provides specialized base-
classes to aid the development of specific forms of endpoint. While specialism of endpoints
is useful, it is important to emphasise that the core ROC system treats endpoints entirely
generically and, as with the Web, the implementation of endpoints is a black-box to the
Kernel and the abstraction.

The NetKernel system provides hundreds of modules. Modules provides services such as
language runtime endpoints, client and server transport endpoints, domain specific resource
models and resource transformation endpoints, domain specific language endpoints, vertical
resource models etc etc. Modules may be hot deployed and dynamically reconfigured without
any downtime of the core kernel. This property allows for evolvable dynamically adaptive
systems to be deployed over very long time periods.

22

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

6.5 Self-supporting System

Finally, the NetKernel system is self-supporting. A wide set of system tools are implemented
as resource oriented applications. For example tools are provided for testing, documentation,
search, linearity analytics, cache analytics, system introspection and discovery, metadata
aggregation and search, etc, etc.

A very powerful tool that can be used for development and for operational analytics
is the Visualizer. The NetKernel visualizer is somewhat like a time-machine debugger in
that it can continuously record the state of execution of the system for static replay and
inspection. Unlike a typical debugger the Visualizer captures pre-existing execution state
of the kernel and so introduces no performance overhead (Heisenberg effects) to a running
system (other than the additional memory required to store the state). Furthermore, and
unlike a debugger, the Visualizer also provides detailed measurement of the performance of
the system – it is therefore also a time-machine-profiler.

All of the tools provided with NetKernel are resource oriented solutions – it follows that
any capability offered by a tool is also a service that may be deployed in some other config-
uration. For example as part of a rich analytic solution or in reporting and management.

The NetKernel system is evolvable, and very stable. It has undergone contin-
uous evolutionary change for over a period of more than ten years. Many tools
and applications have required no adaption in that time.

6.6 Minimal Configuration

Figure 12: Minimal Configuration

While the NetKernel platform is
provided as a full featured applica-
tion server, the core NetKernel sys-
tem is designed to be embeddable
as a micro-architecture in any Java
container.

An embedded core system con-
sists of approximately 1MB of
jarred libraries and only requires
an instantiation of a kernel (K) and
a module manager. Any suitable
configuration of modules can be
initialised to form an ROC domain
within the Java container. Exter-
nal code can construct and issue
requests into the ROC system us-
ing the NetKernel Foundation API
of a gateway endpoint.

The full range of ROC proper-
ties and patterns are available to
the embedded ROC solution.

Careful consideration of the core design ensures that all operating state is encapsulated,
it is therefore possible to run multiple embedded instances in the same virtual machine.

23

c© 1060 Research Ltd Technical Paper, ROCAS v1.2

Equally, since an endpoint is a software container, it is possible to run NetKernel within
NetKernel offering the potential of virtualized ROC domains.

About

1060 Research Ltd. was spun-out from HP Labs in Bristol in 2002, pioneered a new abstrac-
tion in computing called Resource-Oriented Computing R© in order to change the economics
of software engineering. The team went on to develop NetKernelTM the most adaptable next
generation platform. It has been deployed in some of the most demanding environments and
in a number of industries including telecommunications, e-commerce, defense and education.

Download

To get NetKernel from GitHub requires a copy of Gradle and a Java JDK. Alternatively, to
obtain a copy of the Enterprise Edition from the NetKernel Portal please register first here.

24

https://github.com/1060NetKernel/getting-started
https://cs.1060research.com/csp/register/

Technical Paper, ROCAS v1.2 c© 1060 Research Ltd

Glossary

Ackermann function In computability theory, the Ackermann function, named after Wil-
helm Ackermann, is one of the simplest and earliest-discovered examples of a total
computable function that is not primitive recursive. All primitive recursive functions
are total and computable, but the Ackermann function illustrates that not all total
computable functions are primitive recursive. – The Ackermann function, due to its
definition in terms of extremely deep recursion, can be used as a benchmark of a com-
piler’s ability to optimize recursion. The first use of Ackermann’s function in this way
was by Yngve Sundblad.[4]. 15

memoization an optimization technique used primarily to speed up computer programs.
14, 15, 21

REST REpresentational State Transfer. ”The REST style is an abstraction of the archi-
tectural elements within a distributed hypermedia system. REST ignores the details
of component implementation and protocol syntax in order to focus on the roles of
components, the constraints upon their interaction with other components, and their
interpretation of significant data elements. It encompasses the fundamental constraints
upon components, connectors, and data that define the basis of the Web architecture,
and thus the essence of its behavior as a network-based application”.[1]. 3–5, 11

transreption trans-representation, transformation of representations. Information of re-
sulting representation is identical (isomorphic) to original. Lossless transrepresenta-
tion.. 20

References

[1] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. dissertation, 2000.

[2] Yiannis N. Moschovakis. What is an Algorithm?, in: Mathematics Unlimited. Springer,
2001.

[3] Arnold Rosenberg. The Pillars of Computation Theory: State, Encoding, Nondetermin-
ism. Springer, 2010.

[4] Yngve Sundblad. The Ackermann function. A Theoretical, computational and formula
manipulative study. BIT Numerical Mathematics, 1971.

[5] Jan van Leeuwen and Jiri Wiedermann. The Turing Machine Paradigm in Contemporary
Computing, in: Mathematics Unlimited. Springer, 2001.

25

	Challenge
	Definitions
	Resources
	Stability and Evolvability
	The Web

	New General Computing Abstraction
	Turing Tape
	Physical Decoupling
	Research Experience
	ROC Abstraction and NetKernel Platform

	Description of the Web Abstraction
	Resolving Logical Abstract Resources
	Logical Information Resources

	Description of the ROC Abstraction
	Fundamentals
	ROC Generalizes Web Abstraction
	Removing Limitations

	Spacial Multivalency, Scope and Context
	Formal Context of Operation
	Decoupled System
	Very High Reuse of Software

	The Web is Passive
	Dynamically Computed Resource State
	Active URI
	Language Runtime
	Code State Transfer

	Application of the ROC Abstraction
	Systemic Memoization
	Linear Scaling with Mulit-core Architectures
	Software Load Line

	Set theoretic functions
	Overlay
	The Mapper

	Dynamic Import Patterns
	Transreption: Entropy Minimization

	Description of the NetKernel Platform
	Microkernel
	Caching
	Foundation API
	Modules
	Self-supporting System
	Minimal Configuration

