Contents Include:
Resource Oriented Primer
Standard Modules
Identifier Grammars
NetKernel Foundation API

About NetKernel

NetKernel is a Resource Oriented Computing Platform developed
by 1060 Research. It is based upon the Java Standard Edition
platform but incorporates many standards and implementations
from elsewhere. It is distributed in two flavours, Standard Edition
which is licensed under an open source 1060 Public License and an
Enterprise Edition which is commercially licensed. Uses of
NetKernel range from application server, rich client, (or
combinations of both), with HTTP transports and many others
through to very small footprint standalone applications and
embedded with Java containers.

What makes NetKernel different

NetKernel is based upon the Resource Oriented Computing (ROC)
concept rather than the Object Oriented Programming (OOP)
concept used by much of today's software. Research initiated at
Hewlett Packard Labs showed how this unique approach which
combines many of the concepts from REST" and UNIX, has many
compelling consequences for software systems.

Resource Oriented Primer

ROC is a software paradigm which constrains software more tightly
than OOP by providing stronger encapsulation and richer
modularity. It decomposes software into endpoints within address
spaces which are accessed via request-response pairs which
transfer state with representations.

Resource Oriented Concepts

Resource — a modelled abstract entity with state. Resources may
model physical entities, software entities, data or abstract
derivative concepts.

Endpoint — a software service which provides access to read or
modify the state of one or more resources.

Representation — an immutable data structure which can be sent
to endpoint to update the state of a resource or requested
from an endpoint to gain a snapshot of a resource's state.

Quick Reference to

NetKernel v4 Resource Oriented Platform

request.

Accessor — the most common type of endpoint provides access to
a resources state. Also typically embodies transformation
functions and language runtimes.

Transreptor — a specialised endpoint which will convert
information in one representation to the same information
in another representational form. Usually used to adapt
representations between an endpoint and it's client.

Transport — a specialised endpoint which receives events from
outside the resource oriented system and adapts them to a
request. Transports may return responses too.

Overlay — a specialised endpoint which wraps a space and issues
sub-requests into it. This provides the basis for patterns
such as importing spaces into other spaces.

Request Scope — an ordered list of spaces within a request which
are used to determine resolution.

NetKernel's ROC Implementation

NetKernel provides an embodiment of ROC. Here are some of the
pertinent characteristics:

NetKernel Concepts

Microkernel — NetKernel's implementation of ROC uses a
microkernel which is responsible for: lifecycle of modules, spaces
and their contained endpoints as well as mediating requests.

Request — a message issued by a client to act upon a resource.

Asynchronous Requests — Both request issuing and request
handling within endpoints is asynchronous. i.e. requests can be
issued and their response can be retrieved later possibly on a
different thread. Requests can be received and handled by
endpoints, and then responses returned later, possibly when
handling another request.

Caching — Both request resolutions and response representations
will be cached during execution with minimal configuration.
Caching has a rich dependency based approach which ensures
stale items are never served.

Module — NetKernel has a modular architecture. Modules contain
one or more ROC spaces.

Identifier — a character string used to identify resources.

Verb — requests are constrained to a one of small set of well
defined actions with well defined semantics, including:
SOURCE, SINK, EXISTS, DELETE, NEW.

NetKernel Foundation APl — NKF provides a common API for
endpoints which abstracts the low-level kernel APIs and provides
a uniform high level interface.

Resolution — the process of determining the endpoint for a given
request.

Space — a container which aggregates endpoints and hence
resources and provides a resolution mechanism.

Response - returned from an endpoint after processing a

1 Roy Fielding formalised the architecture of the WWW in his doctoral
thesis. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

NKQR-1.1 1

Downloading and Installation

To download NetKernel Standard Edition visit
http:// download.netkernel.org/ and select the latest stable version
from a mirror close to you. There is a single download that works
across the supported platforms, Windows 2000, Windows XP,
Windows Vista, Windows Server 2003, Apple Mac OS X, Linux
(Redhat, Suse, Debian, Ubuntu) and Solaris.

Quick Reference to NetKernel v4 Resource Oriented Platform

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://download.netkernel.org/

You will need to have installed a Java virtual machine version 1.5 or
greater. Supported platforms are Sun 1.5.x and Sun 1.6.x but should
work fine on other versions from other vendors. Visit
http.//www.java.com/getjiava/ for downloads.

Running without installation

Once downloaded and you have ensured Java is installed, open up
a terminal window, change directory to your download directory and

type:

java -jar 1060-NetKernel-SE-x.x.x.jar

Like a Linux Live-CD, NetKernel boots directly from the Jar and is
fully usable. When NetKernel has started, point your web browser at
the NetKernel Admin Panel:

http.//localhost:1060

You can explore the NetKernel tools, documentation and tutorials
here without installation.

Installation

To start developing on NetKernel you will need to install it onto your
filesystem. The Install tab on the Admin Panel provides a self-
installer. Follow the prompts to install.

Sl | install directory [install]

P & bin D} startup scripts
b B etc configuration files
+ (& lib jar files
[* [E2 expanded nested jars from modules copied here
P G ext addition jars added to boot classpath
P & log log files written here
[ES modules default location of installed modules
P EE pds internal registry database
[[E3 searchindex system search index files

Figure 1: NetKernel installation directory structure

Once installed go to the install directory (in the documentation this
is given the shorthand [install]) and type the following at the
command-line:

bin/netkernel.sh [Linux/Unix]
bin\netkernel.bat [Windows]

Standard Module

NetKernel supports a pluggable module-implementation
architecture. Modules are used to deploy functionality onto a
NetKernel instance. By far the most common implementation is the
Standard Module.

Standard Modules may be either a directory on the filesystem or a
Java jar archive. In each case, the root directory contains a file
module.xml which defines the metadata about the module and it's
static structure. module.xml must be well formed XML. Here is an
example of the structure, the important tags are explained below:
<module version="2.0">
<meta>
<identity>
<uri>urn:org:myorg:myproject</uri>
<version>1.0.0</version>
</identity>

NKQR-1.1 2

<info>
<name>My Project</name>
<description>My First NetKernel Project</description>
<icon>res:/org/myorg/myproject/icon.png</icon>
</info>
</meta>
<system>
<dynamic/>
<classloader>
<exports>
<match>org.myorg.myproject.*</match>
</exports>
</classloader>
</system>
</module>

Standard Module Tags

uri| A globally unique identifier for the module. It is
recommended you use URNZs.

version | A version specification which must be three integers
separated by a dot character.

name | A concise name for the module.

description | A longer description of the module.

icon | An optional identifier to a 48x48 pixel PNG icon. This
identifier must be resolvable by the first public space
within the module.

dynamic | If this tag is present the module is polled for changes
in module.xml and any contained Java classes and
will redeploy if changed.

match |By default each module encapsulates it's
classloader. If this tag is present then classes
matching the regular expression will be exported into
importing spaces. Multiple matches can be

specified.

Each Standard Module contains a Java classloader which is used to
load endpoints and representations. The classloader resolves
classes from the following locations in order:

1. The root directory of the module.

2. Each jar file placed in the /lib/ directory in unspecified
order.

3. The exported classes from any imported spaces in
unspecified order.

4. From the boot classloader which contains the kernel and
core libraries.

5. From the Java core libraries.

Defining Spaces

One or more spaces can be defined within a standard module. Root
spaces are top-level spaces that can be imported into other spaces.
Rootspaces are defined with a <rootspace> tag and have the
following attributes:

2 http://en.wikipedia.org/wiki/Uniform_Resource_Name

Quick Reference to NetKernel v4 Resource Oriented Platform

http://localhost:1060/
http://www.java.com/getjava/
http://www.java.com/getjava/
http://www.java.com/getjava/
http://www.java.com/getjava/
http://www.java.com/getjava/
http://www.java.com/getjava/

Rootspace Attributes

@public

Determines if the space is available outside the
module. May have the value “true” or “false”. By
default rootspaces are public.

name

An optional name for the space. The name is used
by tools. The name defaults to the URI of the space.

uri

An optional identifier for the space. The URI is used
to specify spaces when the imported. By default the
spaces identifier is generated from the modules
URI. The first space has the same URI as the
module. Subsequent spaces have the default URI
of the module URI appended with “2”, then “:3”
etc...

private-filter

The optional private-filter tag determines if the
space is wrapped with a filter to hide all private
endpoints to importing spaces. By default a private
filter is used if any contained endpoints are marked
as private.

Space Elements
The following elements can be defined within a space:

<accessor>

code.

id

Define a resource accessor endpoint implemented with Java

(optional) A unique logical identifier for the accessor.
If missing one will be auto-generated.

name

(optional) A name for the accessor used by tools.

description

(optional) A description for the accessor used by
tools.

grammar

See the identifier grammars section.

private

If present this tag indicates that the Accessor should
not be made available outside this module.

class

The implementation class must be a Java class
defined within the classloader for the containing
module. The class must extend:

org.netkernel.module.standard.endpoint.StandardAccessorlmpl

override methods

/I handle SOURCE requests

void onSource(INKFRequestContext context) throws Exception;
// handle SINK requests

void onSink(INKFRequestContext context) throws Exception;

// handle EXISTS requests

void onExists(INKFRequestContext context) throws Exception;
// handle DELETE requests

void onDelete(INKFRequestContext context) throws Exception;
// handle EXISTS requests

void onExists(INKFRequestContext context) throws Exception;
/I handle SOURCE, SINK, EXISTS, DELETE, EXISTS requests
void onRequest(INKFRequestContext context) throws Exception;

<transport>

Define a transport endpoint to receive external events.

NKQR-1.1 3

id, name, | See accessor.

description

class | The implementation class must be a Java class
defined within the classloader for the containing

module. The class must extend:

org.netkernel.module.standard.endpoint.StandardTransportimpl

override methods

// start thread or library that will receive external events

void postCommission(INKFRequestContext context) throws Exception;
// stop thread or library

void preDecommission(INKFRequestContext context) throws Exception;

<transreptor>
Define a transreptor endpoint to convert resource representations
from one form to another.

id, name, | See accessor.

description

class | The implementation class must be a Java class
defined within the classloader for the containing

module. The class must extend:

org.netkernel.module.standard.endpoint.StandardTransreptorimpl

override methods

/lconstructor should call these methods to specify representations
void declareFromRepresentation(Class representationClass);
void declareToRepresentation(Class representationClass);

// handle TRANSREPT requests

void onTransrept(INKFRequestContext context) throws Exception;

<import>
Import another rootspace.

uri | URI of the space to import

private | If present this tag indicates that the imported address
space should not be made available outside this
module.
<fileset>

Expose static resources from the module's directory as resources
with the res: scheme

id, name, | See accessor.

description

Glob expression of resources to expose, e.g. mydir/*
for all resources in the sub-directory “mydir”.

glob

regex | Regular expression of resource identifiers to expose,
e.g. res:/mydir/.* for all resources in the sub-

directory “mydir’. regex and glob are mutually

Quick Reference to NetKernel v4 Resource Oriented Platform

exclusive.

Rewrite the identifier so that static resources can be
located in an alternate location. For use the the
regex tag, the rewrite tag contains an expression
where capturing groups in the regex are substituted
into expression in locations marked by %1, %2 etc.

rewrite

private | If present this tag indicates that the fileset should not

be made available outside this module.

<mapper>
An overlay to wrap a nested space and map it's resources into the
host address space.

config | Mapper configuration document described below.

space| A nested space which may contain any space
elements.

The mapper configuration is an XML document which consists of a
config root tag containing one or more endpoint tags which define
logical endpoints created by mapping to endpoints contained with
the nested space. Endpoints may have the following configuration
tags:

Mapper endpoint tags

id, name, | See accessor space element description.
description

grammar | See the identifier grammars section.

request | The request to issue into the nested space. See
declarative request section.

header | Set header on returned response.

verbs | (Optional) comma separated list of supported verbs.
Default to verbs of underlying endpoint.

private | Endpoint can only be resolved from inside the nested

space. (by sub-requests)

protected | Endpoint is only visible inside this module.

<pluggable-overlay>

Wrap a nested space and pass requests into space through a pre-
process accessor and/or responses through a post-process
accessor.

preProcess | Optional declarative request for pre-process
service. “argrrequest” can be used to reference
inbound request to pass to service.

postProcess | Optional declarative request for post-process
service. “arg:request” and “arg:response” can be
used to reference inbound request and outbound
response respectively.

space| A nested space which may contain any space
elements.

<branch-merge>
An overlay to wrap a nested space, define channels and pass

NKQR-1.1 4

each channel through a chains of handler overlays.

config | See documentation for details.

space | A nested space which may contain any space
elements.

Identifier Grammars

Identifiers are use by a number of technologies as a uniform way of
specifying the identifier syntax of endpoints. Grammars fulfil three
functions: construction of request identifiers by clients to an
endpoint, resolution matching of request identifiers to endpoints and
extraction of arguments from identifiers by endpoints.

Identifier grammars are defined using an XML schema with the
following tags:

Grammar tags

grammar | The root tag of all grammar declarations.

regex | Defines a sequence of characters defined by either a
custom regular expression as text contents, or with a
type attribute defining a preset expression: uri,
active-escaped-uri, active-escaped-uri-loose,
relative-path, relative-directory-path, integer, float,

nmtoken, alphanum, anything.

Defines a group of nested tags. Group supports the

following attributes:

— name — the group will be captured as an argument
with this name.

— max - maximum repetition of this group (defaults to
“1”, use “*” for any number)

— min - minimum repetition of this group (defaults to
“47)

— encoding - optional encoding attribute specifies
how arguments are encoded when identifiers are
constructed and decoded when extracted. By
default no encoding is performed. The only
implemented encoding is active which escapes
unsafe characters inside active identifiers.

group

interleave | Defines a group where nested groups can be
specified in any order.

choice | Defines a group where one and only one of the

nested groups can be specified.

“text” | Any text placed within the grammar and outside a
regex tag will be treated literally.

<grammarshttp://
<group name="hostname”>
<regex type="nmtoken”/>
</group>
<group name="path”>/
<regex>.*</regex>
</group>
</grammar>

Quick Reference to NetKernel v4 Resource Oriented Platform

Active Identifier Grammars match active URIs. They are a special
class of Identifier Grammars with the useful ability to express
function invocation. They are the most common grammars, used for
services like transform or data endpoints. A compact schema is
used with the following tags:

Active Grammar tags

active | Indicate Active Grammar syntax.

identifier | Defines the starting character sequence of the
identifier.

argument | Defines an argument. Arguments are always encoded

as “active”. Argument supports the following

attributes:

— name — the name of the argument

— max - maximum repetition of this argument
(defaults to “1”, use “*” for any number)

— min - minimum repetition of this group (defaults to
“17)

varargs | Allows any number of additional arguments.

<grammar>
<active>
<identifier>active:xslt</identifier>
<argument name="stylesheet”/>
<argument name="operand”/>
<varargs/>
</active>
</grammar>

Declarative Request

Declarative requests are used by many technologies (mapper,
XUnit, XRL, pluggable-overlay, etc.) in which requests must be
constructed based on configuration. Declarative requests are
defined using an XML schema with the following tags:

short, integer, long, float, double, boolean, char,
xml, hds or a fully qualified java class for example
java.net.URI. Constructor argument for java classes
are defined with nested literal tags.

represent | Specify required response representation. This must
ation | be a fully qualified java class or interface.

Example:
<request>
<verb>SOURCE</verb>
<identifier>active:xslt</identifier>
<argument name="stylesheet”>res:/mystylesheet.xsl</argument>
<argument name="operand”>
<literal type="xml">
<doc/>
</literal>
</argument>
<representation>org.w3c.dom.Document</representation>
</request>

Declarative Request tags

request | Root tag of request syntax.

verb | Specify one the verbs: SOURCE, SINK, EXISTS,
DELETE, NEW, TRANSREPT, META. Defaults to
SOURCE.

identifier | The identifier can operate in three modes:

1) Specify complete identifier and don't use
arguments.

2) Specify starting character sequence of an active
identifier. The request will be built with an active
identifier syntax.

3) Use meta: scheme and specify an endpoint id. The
request will be built according to the grammar of the
endpoint.

argument | Adds an argument to the request. The request tag has
a mandatory name attribute. An option method tag
may have the values of value, data-uri, as-string.
Argument tags may either contain a string/identifier
contents or a single literal tag.

Defines a representation that will be passed by-value
on the request. Literal requires a type attribute which

literal

must have on of the following values: string, byte,

NKQR-1.1 5

NetKernel supports a fixed set of request verbs. Each verb has well
defined semantics. Endpoints may implement one or more of these
verbs. Any request may return back a java.lang.Throwable
(exception) upon failure to resolve or if an error happens whilst
processing.

Request Verbs

SOURCE | Request a representation of the current state of a
resource. Should not modify resource. The
requested representation may or may not be
returned by the resolved endpoint. If not then
NetKernel will sequence a TRANSREPT request
afterwards.

SINK |Update the state of a resource with a
representation passed as the primary argument. A
null response is returned.

EXISTS | Test for the existence of a resource. Will return a
java.lang.Boolean TRUE if and only if the request
can be resolved, the endpoint implements the
EXISTS verb and the existence of the resource can
be confirmed.

DELETE | Delete the resource. Will return TRUE if resource
was successfully deleted.

NEW Create a new resource seeded with the
representation passed as the primary argument.
The response is the identifier of the created
resource.

TRANSREPT | Convert information in the primary argument to the
same information in another representational form
specified by the requested representation field on
the request.

META | Request the meta data from an endpoint or space.
Usually this request is used only by tools or
infrastructural endpoints.

These optional standard request headers tweak the behaviour of
request handling. Additional application specific headers can be set.

Quick Reference to NetKernel v4 Resource Oriented Platform

Standard Request Headers

liveness | Set period (milliseconds) before any liveness tests
should consider request non-live.

forget- | Declare that request should not have its
dependencies | dependencies tracked because it is likely to have
too many and that may cause the system to run
out of memory tracking them. By not tracking
dependencies a response will always be expired.
Existence of header causes dependencies to be
forgot.

issued to closures by specifying an identifier of
this:[closure assignment]. The methods available
on arguments within DPML requests differ slightly,
there are lazy (default), eager and identity.

literal | Literals can be defined outside the scope of a

request.

priority | Set the request priority as an integer.

no-cache | Declare that response for this request should not
be retrieved from cache or cached. Usually it is for
the endpoint providing the response to determine
if the representation should be cached. In some
rare situations it is useful for the client to force no
caching. Existence of header inhibits caching.

import | Imports can be specified inside a closure to import

assignments from an external resource. The
external resource must contain a closure root.
Import has an optional precedence tag which
must have the value of same (default), lower or
higher. To determine how imported assignments
are merged with existing assignments.

comment | Comment tags can can any content and so can be

used to provide code comments or disable blocks
of code (because they can be nested unlike XML
comments)

The following optional standard response headers tweak the
behaviour of response handling. Again, additional application
specific headers can be set.

Standard Response Headers

mime | Multipurpose Internet Mail Extensions (MIME) type
meta-data of representation.

declare-tag | Declares a custom tag which will issue a SOURCE

request to a specified endpoint. The required
name attribute specifies the name of the tag to be
declared. The text content of the tag should be the
meta:[identifier of the endpoint to request].
Arguments within the endpoint grammar are
exposed as sub tags within the declared tag.

no-cache | Declare that response should not be cached. This
subtly different from an expired response because
expiry propagates to dependent resources.

dereference | Defines a dereference assignment where by the

contents of the tag (which may be a request,
closure or sequence) provides an identifier which
can then be used in subsequent processing.

cache-boost | Define a boost factor to increase cache weighting.

Must be an integer >0.

DPML

Declarative Process Markup Language (DPML) is a language for
orchestration and sequencing or resource requests. DPML defines
processing using an XML schema with the following tags:

These preset tags are defined to call endpoints within the DPML

module:

DPML Tags

sequence | Either as the root of the document or nested inside
another sequence, this tag defines a sequence of
processing steps that are evaluated in strict order.
A sequence tag may have a assignment attribute
which assigns it's response to a variable within
parent scope. Each step within a sequence may be
another sequence, closure, request, literal,
comment or one of the built-in endpoints.

closure | Either as the root of the document or nested inside
another sequence, this tag defines a set of
assignments which are evaluated as necessary to
satisfy evaluation of the response assignment.
Each assignment may a sequence, closure,
request, literal, import, comment or one of the built-
in endpoints.

request | Defines a sub-request using declarative request
syntax. A request may reference assignments in
scope using this:[assignment]. Request arguments
may contain identifier strings, literals, or nested
sequence, closure or requests. Requests may also

DPML Built-in endpoints

if

Perform conditional processing by evaluating the
cond tag to a boolean. If true the then tag is
evaluated otherwise the else tag is evaluated.

exception

Processes the try tag and if any unhandled
exceptions are thrown the optional catch tag is
evaluated. The catch evaluation is provided with the
raw exception as arg:exception and the exception ID
string as arg:exception-id and the message as
arg:exception-message.

throw

Construct and throw an exception with an id string,
optional message string and optional cause
exception.

log

Log a message. The message tag is evaluated to a
string and optional param tags will be used to replace
substitution points marked by %1, %2 etc in the
message. Optional level tag can be set to INFO
(default), WARNING or SEVERE.

modify-
response

NKQR-1.1 6

Specify response expiry and response headers. Used
at the end of sequence or closure modify-response
takes the existing response as operand and a config
XML document. Example:

<modify-response assignment="response">
<operand>this:response</operand>

Quick Reference to NetKernel v4 Resource Oriented Platform

<config>

</config>
</modify-response>

<literal type="xml">
<config>
<header name="mime">text/plain</header>
<expiry method="CONSTANT">60000</expiry>
</config>
</literal>

Optional expiry method must be one of: ALWAYS,
NEVER, DEPENDENT (default), CONSTANT,
MIN_CONSTANT_DEPENDENT or
MAX_CONSTANT_DEPENDENT.

INKFResponse
ReadOnly

sourceForResponse(String identifier,
Class representationClass)
Source the resource returning response.

<T>T

sourcePrimary(Class<T> representationClass)
Source the primary argument as a specific representation.

INKFResponse
ReadOnly

sourcePrimaryForResponse(Class representationClass)
Source the primary argument return response.

<T>T

transrept(Object primary, Class representationClass)
Transrept an internally created resource representation into
alternative form.

NetKernel Foundation API

The NKF API is available with endpoints implemented in Java and
many of the scripting languages. This section contains the most
commonly used interfaces and methods.

INKFRequestContext

INKFResponse
ReadOnly

transreptForResponse(Object primary,

Class representationClass)

Transrept an internally created resource representation into
alternative form.

INKFRequ

est

void

addArgument(String name, String identifier)
Add a named argument to the request identifier

void

addArgumentByValue(String name,

Object representation)

Add the argument to a pass-by-value space which is
injected into the request context.

INKFRequest

createRequest(String identifier)
Create a request with a given base identifier.

INKFRequest

createRequestToEndpoint(String endpointld)
Create a request which is targeted at a specific endpoint.

INKFResponse

createResponseFrom(INKFResponseReadOnly resp)
Create a response from this endpoint based on this
response from a subrequest.

void

addArgumentFromResponse(String name,
INKFResponseReadOnly response)

Add a named pass-by-value argument to the request with
the value and metadata from a previous sub-request or
internally constructed.

void

addPrimaryArgument(Object representation)
Set the primary argument on the request.

INKFResponse

createResponseFrom(Object representation)
Create a response from this endpoint based on this
representation of the resource.

boolean

delete(String identifier)
Delete a resource for the given Identifier.

void

addPrimaryArgumentFromResponse(
INKFResponseReadOnly resp)

Set the primary argument on the request from a previous
sub-request or internally constructed.

boolean

exists(String identifier)
Check for the existence of a resource for the given
Identifier.

void

injectRequestScope(ISpace space)
Inject an additional space into the scope of the request to
execute.

INKFRequest
ReadOnly

getThisRequest()
Return a wrapper around the request which initiated the
invocation of this accessor.

void

setHeader(String name, Object representation)
Set a header on the request.

INKFAsync
RequestHandle

issueAsyncRequest(INKFRequest request)
Issue an asynchronous request.

void

setPriority(int priority)
Set the priority header on the request. (constants for this
value defined as fields on INKFRequestReadOnly)

Object

issueRequest(INKFRequest request)
Issue a synchronous request.

void

setRepresentationClass(Class representationClass)
Indicate the required type (class or interface) of the object
returned as the resource representation when this request
is processed.

INKFResponse
ReadOnly

issueRequestForResponse(INKFRequest request)
Issue the request returning back the whole response so
that headers or expiration can be interrogated.

String

requestNew(String identifierBase, Object representation)
Request the creation of a new resource based on the given
identifier and representation.

void

setVerb(int verb)

Sets the verb of the request encoded as an integer value.
(constants for this value defined as fields on
INKFRequestReadOnly)

INKFRequ

estReadOnly

void

setNoResponse()

For asynchronous endpoints that don't want to return a
response immediately they must call this method to ensure
that no synchronous response is returned to the requestee
when they complete.

boolean

argumentExists(String name)
Return true if the given argument is on the request.

int

getArgumentCount()
Return the number of arguments on the request.

void

sink(String identifier, Object representation)
Sink a representation to the resource identified by identifier

String

getArgumentName(int index)
Get the name of the argument at the given index.

Object

source(String identifier)
Source a resource

String

getArgumentValue(int index)
Get the value of the argument at the given index.

<T>T

source(String identifier, Class<T> representationClass)
Source a resource for a specific representation.

INKFResponse
ReadOnly

sourceForResponse(String identifier)

String

getArgumentValue(String name)
Return the value of the first instance of given argument,
null if it doesn't exist.

Source the resource returning response.

NKQR-1.1 7

Set<String>

getHeaderKeys()
Return the set of all header names on this request

Quick Reference to NetKernel v4 Resource Oriented Platform

Object

getHeaderValue(String name)
Return the value for a specific header

List<Object>

getHeaderValues(String name)
Return all the values for a given header.

complete and return response.

INKFResponse
ReadOnly

joinForResponse(long timeout)
Wait for an asynchronous subrequest to complete and

return response.

String

getldentifier()
Return the Identifier of the request

Object

getPrimary()
Returns the primary representation on the request or null if
non supplied

INKFResponse
ReadOnly

getPrimaryAsResponse()
Returns the primary response on the request or null if non
is supplied

Class

getRepresentationClass()
Return the representation class that the client expects in
the response

int

getVerb()
Return the request verb. (constants for this value defined
as fields on this interface)

INKFResponse

void

setExpiry(int type)
Set the mode of expiry for this response. (constants for this
value defined as EXPIRY_fields on this interface)

void

setExpiry(int type, long timeConstant)
Set a time based expiry.

void

setExpiry(int type, INKFExpiryFunction function)
Set a custom expiry function.

void

setHeader(String name, Object representation)
Sets a response header.

void

setMimeType(String type)
Sets the mimetype header.

void

setNoCache()
Set the NO_CACHE header.

INKFResponseReadOnly

Object

getHeader(String name)
Return header value.

<T>T

getHeaderAs(String name, Class<T> representation)
Return header with a specified representation class. Will
transrept if necessary.

lterator<String>

getHeaderNames()
Return an iterator over header names.

String

getMimeType()
Return the mime header.

Object

getRepresentation()
Return the representation in the response

INKFRequest

getRequest()
Return the request that was issued to give this response

boolean

hasHeader(String name)
Return true if a header with the given name is present on
the response

boolean

isExpired()
Return true if the response has expired.

INKFAsyncRequestHandle

Object

join()
Wait indefinitely for an asynchronous subrequest to
complete and return representation.

Object

join(long timeout)
Wait for an asynchronous subrequest to complete and
return representation.

INKFResponse
ReadOnly

joinForResponse()
Wait indefinitely for an asynchronous subrequest to

NKQR-1.1 8

void|setListener(INKFAsyncRequestListener listener)
Register a listener to be notified when the response is
available.

INKFAsyncRequestListener

void|receiveException(NKFException exception,
INKFRequest request, INKFRequestContext context)
Called when a request fails.

void|receiveResponse(INKFResponseReadOnly response,
INKFRequestContext context)
Called when the response from a request is available.

Developer Tools

The Netkernel Admin Panel http:/localhost:1060/ provides a
number of useful developer tools:

Key Developer Tools

Visualizer |[A time machine debugger which captures every
request and response so that you can see exactly

what is happening during the processing of a request.

Request
Trace

Injects requests into a space so that you can test
resolution and other behaviours.

Grammar
Kitchen

Develop grammars and test their operation parsing,
matching and generating identifiers.

Space
Explorer

Browse deployed modules and spaces seeing their
endpoints.

Xunit
Testing

NetKernel Enterprise Edition

NetKernel Enterprise Edition adds assurance to the rock solid
NetKernel foundation. It includes professional development,
production and management features that take your use of
NetKernel to the next level.

Develop and execute unit tests for your modules.

Enterprise features include: Apposite Repository Manager, XLoad
Test Framework, Highly scalable asynchronous HTTP Client /
Server, Realtime Profiling and Reporting, Deadlock Detector, Leak
Detector, Encrypted Modules and Role based Admin Panel security.

1060 Research recommends NetKernel
production environments.

Getting more Information

NetKernel ships with rich library of documentation which covers all
the aspects in the reference in more detail as well as many other
topics. Questions can be asked on the NetKernel Discussion Forum
at http://www.netkernel.org/forum/ which is read on monitored by
the NetKernel team as well as community members.

Enterprise Edition in

Before commencing serious development with NetKernel we would
suggest taking out a support subscription which will provide
responsive and detailed help with any aspect of NetKernel. For
more details see: http://www.1060research.com/services/support/

Quick Reference to NetKernel v4 Resource Oriented Platform

http://www.1060research.com/services/support/
http://www.netkernel.org/forum/w
http://localhost:1060/p

	About NetKernel
	What makes NetKernel different

	Resource Oriented Primer
	NetKernel's ROC Implementation

	Downloading and Installation
	Running without installation
	Installation

	Standard Module
	Defining Spaces
	Space Elements

	Identifier Grammars
	Declarative Request
	Requests
	DPML
	NetKernel Foundation API
	INKFRequestContext
	INKFRequest
	INKFRequestReadOnly
	 INKFResponse
	INKFResponseReadOnly
	INKFAsyncRequestHandle
	INKFAsyncRequestListener

	Developer Tools
	NetKernel Enterprise Edition
	Getting more Information

