NetKernel : Distributed Cache
or Distributed Representation
State?

Peter Rodgers

<1060®> 2009-11-15

research
© 2009 - 1060 Researc



Can I distribute the NetKernel Cache?

* The representation I have generated has
a lifetime that is potentially very long and
could be shared across different nodes in
my architecture.

- Do I use an L1/L2/.../LN tiered NK cache?
- Do I distribute the cache?

* Answer: The above are possible, we'll
show how, but there is a better "ROC
way” of looking at this.

<1060

www.1060research.com



Howto Roll your own NetKernel Cache

Has a simple interface IRepresentationCache

Can supply your own implementation to the Kernel (see
embedding tutorial)

Has to be very efficient since it is interrogated for
nearly every request.

To minimize footprint need to understand the spacial
context (superstack scope etc) — the NK cache has
some very fancy internal tricks for determining scope
overlap (it caches one thing for many request contexts)

Could create a configurable cache in which a known set
of resources are placed in a distributed object container
(like Terracota). You'd then have transparent
distributed cache. But this is potentially clumsy and is
a net global system cost for something that is probably
of localized architectural benefit (see next slide)

www.1060research.com research



Shared Distributed Cache

NetKernel 1

[ Requestor ]

N

[ Endpoint }

www.1060research.com

NetKernel 2

[ Requestor ]

\‘

[ Endpoint ]

[IRepresentatioﬂ [IRepresentatiorq
Cache Cache
AN /
w
Shared
Objects

(eg Terracota)

~

<1060>

rese

foT]

rch



Share Resource State

* Isn't what you really want “"Shared
Resource State”.

* That is, as long as all nodes see the same
state consistently for the same resource
identifier, that state can be either
remotely accessed or locally cached.

* Next slide shows the ROC diagram view.
Essentially we need to think of our
abstract set as distributed...

i
www.1060research.com <1%5613931



Distributed Resource Set

NetKernel 1 NetKernel 2

[ Requestor ] [ Requestor ]

[ Endpoint Endpoint ]

i
www.1060research.com <1%56e rc::;f'l

foT]



How to do this?

* The endpoint responsible for access to the abstract set
needs to do a couple of things

- It should be able to connect to a common
persistence mechanism (file, db, distributed
objects, etc etc)

- It should implement a fallback processing pattern
in which it first attempts to SOURCE from the
external state, if not present it generates state
locally and then externally persists (ie for the
cluster - for consistency it might be easiest to
do this with RDBMS since it has the necessary
locking)

- The local representation is locally cacheable in
the NK cache too but it should have a user-
assigned expiry function (see next slide)
<1060>

www.1060research.com research



Programmable Cache Control

 INKFResponse.setExpiry(
INKFResponse.EXPIRY_FUNCTION,

INKFEXxpiryFunction
)

INKFExpiryFunction.isExpired(long now)

(]
www.1060research.com <1%56-9.931



Optimal Balance
Distributed State / Local Caching

* User expiry function can be very
lightweight - is the only external state
monitor required to maintain local cached
performance with cluster consistency.

* Can also attach golden threads for
system/application-wide cache control.

* Solution gives distributed state, long term
persistence (even after node restarts)
and minimal external latency. Plus it
allows local NK cache to self-balance.

<1060

www.1060research.com



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

