
© 2009 - 1060 Research Ltd

NetKernel : Distributed Cache
or Distributed Representation
State?

Peter Rodgers
2009-11-15

www.1060research.com

Can I distribute the NetKernel Cache?

● The representation I have generated has
a lifetime that is potentially very long and
could be shared across different nodes in
my architecture.

– Do I use an L1/L2/.../LN tiered NK cache?
– Do I distribute the cache?

● Answer: The above are possible, we'll
show how, but there is a better “ROC
way” of looking at this.

www.1060research.com

Howto Roll your own NetKernel Cache
● Has a simple interface IRepresentationCache

● Can supply your own implementation to the Kernel (see
embedding tutorial)

● Has to be very efficient since it is interrogated for
nearly every request.

● To minimize footprint need to understand the spacial
context (superstack scope etc) – the NK cache has
some very fancy internal tricks for determining scope
overlap (it caches one thing for many request contexts)

● Could create a configurable cache in which a known set
of resources are placed in a distributed object container
(like Terracota). You'd then have transparent
distributed cache. But this is potentially clumsy and is
a net global system cost for something that is probably
of localized architectural benefit (see next slide)

www.1060research.com

Requestor

Endpoint

Shared
Objects

(eg Terracota)

NetKernel 1

Requestor

Endpoint

NetKernel 2

Shared Distributed Cache

IRepresentation
Cache

IRepresentation
Cache

www.1060research.com

Share Resource State

● Isn't what you really want “Shared
Resource State”.

● That is, as long as all nodes see the same
state consistently for the same resource
identifier, that state can be either
remotely accessed or locally cached.

● Next slide shows the ROC diagram view.
Essentially we need to think of our
abstract set as distributed...

www.1060research.com

Distributed Resource Set

Requestor

Endpoint

Shared
State

NetKernel 1

Requestor

Endpoint

NetKernel 2

Resource Reference

Abstract
Resource Set

www.1060research.com

How to do this?
● The endpoint responsible for access to the abstract set

needs to do a couple of things

– It should be able to connect to a common
persistence mechanism (file, db, distributed
objects, etc etc)

– It should implement a fallback processing pattern
in which it first attempts to SOURCE from the
external state, if not present it generates state
locally and then externally persists (ie for the
cluster - for consistency it might be easiest to
do this with RDBMS since it has the necessary
locking)

– The local representation is locally cacheable in
the NK cache too but it should have a user-
assigned expiry function (see next slide)

www.1060research.com

Programmable Cache Control

● INKFResponse.setExpiry(

 INKFResponse.EXPIRY_FUNCTION,

 INKFExpiryFunction
)

INKFExpiryFunction.isExpired(long now)

www.1060research.com

Optimal Balance
Distributed State / Local Caching

● User expiry function can be very
lightweight – is the only external state
monitor required to maintain local cached
performance with cluster consistency.

● Can also attach golden threads for
system/application-wide cache control.

● Solution gives distributed state, long term
persistence (even after node restarts)
and minimal external latency. Plus it
allows local NK cache to self-balance.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

